Let $$BC=AC=x$$ and $$\angle APC = \theta$$
$$\because C$$ is the mid point
$$\Rightarrow AB=2x$$
$$\Rightarrow AP=nAB=2nx$$
Now, In $$\triangle APC,$$
$$\Rightarrow \tan \theta =\dfrac{AC}{PA}=\dfrac{x}{2nx}$$
$$\Rightarrow \tan \theta =\dfrac{1}{2n}\longrightarrow (1)$$
In $$\triangle BPA,$$
$$\Rightarrow \tan { \left( \theta +\phi \right) } =\dfrac { AB }{ AP } =\dfrac { 2x }{ 2nx } =\dfrac { 1 }{ n } $$
$$\Rightarrow \dfrac { \tan { \theta } +\tan { \phi } }{ 1-\tan { \theta } \tan { \phi } } =\dfrac { 1 }{ n } $$
From $$(1),$$ using $$\tan \theta =\dfrac{1}{2n}$$
$$\Rightarrow \dfrac { \dfrac { 1 }{ 2n } +\tan { \phi } }{ 1-\dfrac { 1 }{ 2n } \tan { \phi } } =\dfrac { 1 }{ n } $$
$$\Rightarrow n\left( \dfrac { 1 }{ 2n } +\tan { \phi } \right) =1-\dfrac { 1 }{ 2n } \tan { \phi } $$
$$\Rightarrow \dfrac { 1 }{ 2 } +n\tan { \phi } =1-\dfrac { 1 }{ 2n } \tan { \phi } $$
$$\Rightarrow \tan { \phi } \left( n+\dfrac { 1 }{ 2n } \right) =1-\dfrac { 1 }{ 2 } $$
$$\Rightarrow \tan { \phi } \left( \dfrac { { 2n }^{ 2 }+1 }{ 2n } \right) =\dfrac { 1 }{ 2 } $$
$$\Rightarrow \tan { \phi } =\dfrac { 2n }{ 2\left( { 2n }^{ 2 }+1 \right) } =\dfrac { n }{ { 2n }^{ 2 }+1 } $$
$$\Rightarrow \cot { \phi } =\dfrac { 1 }{ \tan { \phi } } =\dfrac { { 2n }^{ 2 }+1 }{ n } $$
Hence, the answer is $$\dfrac { { 2n }^{ 2 }+1 }{ n }. $$