Self Studies

Some Applications of Trigonometry test - 58

Result Self Studies

Some Applications of Trigonometry test - 58
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A straight tree breaks due to wind and the broken parts bends without getting detached such that the top of the tree touches the ground making an angle of 30$$^o$$ with the ground. The distance from the part of the tree to the point when the top touches the ground is 10 m. The height of the tree is _____.
    Solution
    Refer figure, let AB be the tree broken at point C 
    such that CD takes position CD and $$\angle$$ADC = 30$$^o$$. 
    Then, $$AD = 10$$ m.
    Let, $$AC = x$$ m and CD $$= y$$ m
    Then the height of the tree $$= (x + y)$$ m

    Now, $$\displaystyle{\frac{AC}{AD} = \tan30^o \Rightarrow \frac{x}{10} \Rightarrow x = \frac{10}{\sqrt3}}$$ m 

    And, $$\displaystyle{\frac{AD}{CD} = \cos30^o \Rightarrow \frac{\sqrt3}{2} = \frac{10}{y} \Rightarrow y = \frac{20}{\sqrt3}}$$ m

    $$\therefore$$ Height of tree $$= x + y$$
    = $$\displaystyle{\frac{10}{\sqrt3} + \frac{20}{\sqrt3}}$$ m

    = $$\displaystyle{\frac{30}{\sqrt3}}$$m = 10$$\sqrt3$$m 

    So, option D is correct.

  • Question 2
    1 / -0
    The elevation of the top of a hill at each of the three angular points X, Y, Z of a horizontal $$\displaystyle \Delta XYZ$$ is $$\displaystyle \alpha $$, then the height of the hill is 
  • Question 3
    1 / -0
    A tree $$10(2+\sqrt 3)$$ metres high is broken by the wind at a height $$10\sqrt 3$$ metres from its root in such a way that top struck the ground at certain angle and horizontal distance from the root of the tree to the point where the top meets the ground is $$10m$$. Find the angle of elevation made by top of the tree with the ground.
    Solution
    Consider the given figure,
    $$AC$$
    $$=10(2+\sqrt{3})-10\sqrt{3}$$
    $$=20m$$
    $$=Hypotenuse.$$
    Hence
    $$\sin(\angle C)$$
    $$=\dfrac{AB}{AC}$$

    $$=\dfrac{10\sqrt{3}}{20}$$

    $$=\dfrac{\sqrt{3}}{2}$$
    $$=\sin60^{0}$$
    Hence
    $$\angle C= 60^{0}$$
    Hence the angle of elevation made by top of the tree with the ground is $$60^{0}$$.

  • Question 4
    1 / -0
    A man is watching from the top of a tower, a boat speeding away from the tower. The boat makes an angle of depression of $$\displaystyle 45^{0}$$ with the man's eye when at a distance of 60 meters from the tower. After 5 seconds the angle of depression becomes $$\displaystyle 30^{0}$$. What is the approximate speed of the boat assuming that it is running in still water?
    Solution
    Let $$AB$$ be the tower and $$C$$ and $$D$$ be the point of observation from boat.
    Given $$ AC =60 \text{ m}$$ and $$\angle ADB=30^{0}$$ and $$ \angle ACB=45^{0}$$

    Let height of tower is $$h \text{ m}$$
    In $$\Delta BAC$$,
    $$\tan 45^{0}=\cfrac{AB}{AC}$$
    $$\Rightarrow 1=\cfrac{AB}{60}$$
    $$\Rightarrow AB=60 \text{ m}$$

    In $$\Delta BAD$$,
    $$\tan 30^{o}=\cfrac{AB}{AD}$$
    $$\Rightarrow \cfrac{1}{\sqrt{3}}=\cfrac{60}{AD}$$
    $$\Rightarrow AD=60\sqrt{3} \text{ m}$$

    $$\therefore CD=AD-AC=60\sqrt{3}-60=60(\sqrt{3}-1)$$

    Then, speed $$=\cfrac{60(\sqrt{3}-1)}{5} \text{ m/s}$$
    And approximate speed $$=\cfrac{12\times 0.73\times 3600}{1000}\approx 32 \text{ km/h}$$

  • Question 5
    1 / -0
    The angle of elevation of the top of the tower from two points at distance $$a\ m$$ and $$b\ m$$ from the base and in the same straight line with it are complementary, then the height of the tower is 
    Solution
    Let AB be the tower and C and D be the points of observations on AC.
    If $$\angle$$ACB = $$\theta$$ then $$\angle$$ADB = 90$$^o$$ - $$\theta$$ and $$AB = h$$ m

    Also, $$AC = a, AD = b$$ and $$CD = (a - b)$$ 

    $$\therefore$$ tan$$\theta$$ = $$\displaystyle{\frac{AB}{AC} = \frac{h}{a}}$$, $$tan(90^o - \theta) = \displaystyle{\frac{AB}{CD} = \frac{h}{b} \Rightarrow  \frac{h}{b}}$$ 

    Also, tan$$\theta$$ . Cot $$\theta$$ = 1
    $$\therefore$$ $$\displaystyle{\frac{h}{a} \times \frac{h}{b}}$$ = 1

    $$\therefore h^2 = ab$$
    $$\therefore h = \sqrt{ab}$$ m
    $$\therefore$$ Height of the tower is $$\sqrt{ab}$$ m. 

    So, option C is correct.

  • Question 6
    1 / -0
    $$AB$$ is a vertical pole. The end $$A$$ lies on the ground. $$C$$ is the midpoint of $$AB. P$$ is a point on the level ground such that the portion $$BC$$ subtends an angle $$\displaystyle  \phi $$ at $$P$$. If $$AP = nAB$$ then the value of $$\displaystyle  \cot \phi $$ is:    
    Solution

    Let $$BC=AC=x$$ and $$\angle APC = \theta$$
    $$\because C$$ is the mid point
    $$\Rightarrow AB=2x$$
    $$\Rightarrow AP=nAB=2nx$$

    Now, In $$\triangle APC,$$

    $$\Rightarrow \tan \theta =\dfrac{AC}{PA}=\dfrac{x}{2nx}$$

    $$\Rightarrow \tan \theta =\dfrac{1}{2n}\longrightarrow (1)$$

    In $$\triangle BPA,$$

    $$\Rightarrow \tan { \left( \theta +\phi  \right)  } =\dfrac { AB }{ AP } =\dfrac { 2x }{ 2nx } =\dfrac { 1 }{ n } $$

    $$\Rightarrow \dfrac { \tan { \theta  } +\tan { \phi  }  }{ 1-\tan { \theta  } \tan { \phi  }  } =\dfrac { 1 }{ n } $$

    From $$(1),$$ using $$\tan \theta =\dfrac{1}{2n}$$

    $$\Rightarrow \dfrac { \dfrac { 1 }{ 2n } +\tan { \phi  }  }{ 1-\dfrac { 1 }{ 2n } \tan { \phi  }  } =\dfrac { 1 }{ n } $$

    $$\Rightarrow n\left( \dfrac { 1 }{ 2n } +\tan { \phi  }  \right) =1-\dfrac { 1 }{ 2n } \tan { \phi  } $$

    $$\Rightarrow \dfrac { 1 }{ 2 } +n\tan { \phi  } =1-\dfrac { 1 }{ 2n } \tan { \phi  } $$

    $$\Rightarrow \tan { \phi  } \left( n+\dfrac { 1 }{ 2n }  \right) =1-\dfrac { 1 }{ 2 } $$

    $$\Rightarrow \tan { \phi  } \left( \dfrac { { 2n }^{ 2 }+1 }{ 2n }  \right) =\dfrac { 1 }{ 2 } $$

    $$\Rightarrow \tan { \phi  } =\dfrac { 2n }{ 2\left( { 2n }^{ 2 }+1 \right)  } =\dfrac { n }{ { 2n }^{ 2 }+1 } $$

    $$\Rightarrow \cot { \phi  } =\dfrac { 1 }{ \tan { \phi  }  } =\dfrac { { 2n }^{ 2 }+1 }{ n } $$

    Hence, the answer is $$\dfrac { { 2n }^{ 2 }+1 }{ n }. $$


  • Question 7
    1 / -0
    Four point $$A, B, C, D$$ are in a plane so that $$B$$ is in the line joining $$A$$ and $$C$$ also $$B$$ is due north of $$D$$ and $$D$$ is due west of $$C$$. $$BD = 2$$, $$\displaystyle \angle BDA = 45^{\circ}$$ $$\displaystyle \angle BCD = 30^{\circ}$$. Then $$AD$$ equal to: 
    Solution
    According to Given Conditions we can make the Above Triangle

    In $$\triangle ABD$$
    $$\dfrac{AB}{BD}=tan45^o\Rightarrow \dfrac{AB}{2}=1\Rightarrow AB=2$$

    $$AD^2=AB^2+BD^2\Rightarrow AD=\sqrt{2^2+2^2}=2\sqrt2$$

    Therefore, Answer is $$2\sqrt2$$

  • Question 8
    1 / -0
    On the ground level, the angle of elevation of a tower is $$ 30$$$$^o$$. On moving $$20$$ m nearer, the angle of elevation is $$60$$$$^o$$. The height of the tower is _____.
    Solution
    From the given figure, AB be the tower, C and D 
    be the points of observation on AC such that 
    $$\angle BCD = 30^o$$, $$\angle BDA = 60^o$$ and $$CD = 20$$ m

    Also, Let $$DA = x$$ m
    Now, 
    tan 60$$^o$$ = $$\displaystyle{\frac{AB}{AD} \Rightarrow \frac{AB}{x} = \sqrt3 \Rightarrow AB = x\sqrt3}$$ .....1

    tan 30$$^o$$ = $$\displaystyle{\frac{AB}{AC} \Rightarrow \frac{1}{\sqrt3} = \frac{AB}{20 + x} \Rightarrow AB = \frac{20 + x}{\sqrt3}}$$ .....2

    $$\therefore$$ From 1 and 2,

    x$$\sqrt3$$ = $$\displaystyle{\frac{20 + x}{\sqrt3} \Rightarrow 3x = 20 + x \Rightarrow x = 10 m}$$ 
    Height=AB=$$x\sqrt3=10\sqrt3$$

    So, option D  is correct.

  • Question 9
    1 / -0
    If the sun ray's inclination increases from $$\displaystyle  45^{\circ}$$ to $$\displaystyle  60^{\circ}$$ the length of the shadow of a tower decreases by $$50\ m$$. Find the height of the tower.
    Solution
    REF image
    H is the height of the tower and BC and BD are the length of the shadow.

    In $$\triangle ABC$$
    $$\tan60^o=\dfrac{H}{x}\Rightarrow x=H\cot60^o=\dfrac{H}{\sqrt3}.......(1)$$

    In $$\triangle ABD$$
    $$\tan45^o=\dfrac{H}{x+50}\Rightarrow x+50=H\Rightarrow x=H-50.........(2)$$

    From (1) and (2) we get,
    $$\dfrac{H}{\sqrt3}=H-50   \Rightarrow H=\sqrt3H-50\sqrt3\Rightarrow H=\dfrac{50\sqrt3}{\sqrt3-1}=\dfrac{50\sqrt3(\sqrt3+1)}{(\sqrt3-1)(\sqrt3+1)}=25(3+\sqrt3)$$

    Therefore, Answer is $$25(3+\sqrt3)$$

  • Question 10
    1 / -0
    The angles of elevation of an aeroplane flying vertically above the ground from two consecutive milestones(1 km) apart are 45$$^o$$ and 60$$^o$$. The height of the aeroplane from the ground is _____ 
    Solution
    Let A be the position of aeroplane and 
    B and C be the two milestones 
    $$\therefore$$ BC = 1 km.
    Let AD = perpendicular meeting BC at D.
    $$\angle$$ABD = 45$$^o$$ and $$\angle$$ACD = 60$$^o$$
    let AD = h km, CD = x km
    Now, tan45$$^o$$ = $$\displaystyle{\frac{h}{x + 1} \Rightarrow 1 = \frac{h}{x + 1} \Rightarrow}$$ x = h- 1 

    Also, tan60$$^o$$ = $$\displaystyle{\frac{h}{x} \Rightarrow \sqrt3 = \frac{h}{x} \Rightarrow x= \frac{h}{\sqrt3}}$$

    $$\therefore$$$$\displaystyle{\frac{h}{\sqrt3}}$$ = h - 1 $$\therefore$$ h = $$\displaystyle{\frac{\sqrt3}{\sqrt3 - 1} = \frac{1}{2}(3 + \sqrt3)}$$ km

    $$\therefore$$ The height of the aeroplane is $$\displaystyle{\frac{1}{2}}$$(3 + $$\sqrt3$$) km 

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now