Self Studies

Mix Test 11

Result Self Studies

Mix Test 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    What number must be added to each of the numbers 5, 9, 17, 27 to make new numbers in proportion?

    Solution

    Let the number to be added be x.

    Then the numbers 5, 9, 17, 27 will be 5 + x, 9 + x, 17 + x, 27 + x.

    Given that new numbers are in proportional,

    i.e., 5 + x : 9 + x :: 17 + x : 27 + x.

    \(\Rightarrow\) \(\frac{5+\text{x}}{9+\text{x}}=\frac{17+\text{x}}{27+\text{x}}\)

    \(\Rightarrow\) (5 + x)(27 + x) = (9 + x)(17 + x)

    \(\Rightarrow\) \(\text{x}^2\) + 32x + 135 = \(\text{x}^2\) + 26x + 153

    \(\Rightarrow\) 32x − 26x = 153 − 135

    \(\Rightarrow\) 6x = 18

    \(\Rightarrow\) \(\text{x}=\frac{18}{6}=3.\)

  • Question 2
    1 / -0

    \(10^{th}\) term from the end of the AP 4, 9, 14, … … … . , 254 is

    Solution

    Given AP is 4, 9, 14……...,254.

    First term of AP is a = 4.

    Common difference of AP is d \(=a_2-a_1=9-4=5.\)

    \(n^{th}\) term of AP is \(a_n\) = 254.

    \(\because\) \(a_n\) = a + (n – 1) d

    \(\therefore\) a + (n – 1) d = 254

    \(\Rightarrow\) 4 + (n − 1)5 = 254 (a = 4 & d = 5 and \(a_n\) = 254)

    \(\Rightarrow\) 5(n − 1) = 254 − 4 = 250

    \(\Rightarrow\) n − 1 = \(\frac{250}{5}=50\)

    \(\Rightarrow\) n = 50 + 1 = 51.

    \(10^{th}\) term from the end of the AP is 51 – (10 – 1) = 51– 9 = \(42^{th}\) term of AP.

    \(\therefore\) \(a_{42}\) = a + (42 – 1) d = 4 + 41 × 5 = 4 + 205 = 209. (\(\because\) a = 4, d = 5)

    Hence, the \(10^{th}\) term from the end of the given AP is 209.

  • Question 3
    1 / -0

    All red face cards are removed from a pack of playing cards. The remaining cards are well shuffled and then a card is drawn at random from them.

    The probability that the drawn card is neither a red card nor a queen is :

    Solution

    \(\because\) Jack, queen and king are face cards.

    After removing red face cards total number of remaining cards in the pack

    n(s) = 52 – 3 × 2 = 52 – 6 = 46.

    The number of cards which neither a red card nor a queen

    n(E) = Total number of cards – Total number of red cards – Total number of black queen cards = 46 – 20 – 2 = 24.

    \(\therefore\) Probability that the drawn card is neither a red card nor a queen \(=\frac{n(E)}{n(S)}=\frac{24}{46}=\frac{12}{23}\)

  • Question 4
    1 / -0

    If tan \(\theta\) \(=\frac{18}{5}.\) Then the value of \(\frac{(2+2\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(2-2\cos\theta)}\) is

    Solution

    We have tan θ = \(\frac{8}{15}\)

    \(\therefore\) sec θ = \(\sqrt{1+\tan^2\theta} \) (\(\because\) 1 + \(\tan^2\theta = \sec^2\theta\))

    \(=\sqrt{1+\frac{64}{225}}\)

    \(=\sqrt{\frac{225+64}{225}}\)

    \(=\sqrt{\frac{289}{225}}\)

    \(=\frac{17}{15}.\)

    \(\therefore\) cos θ = \(\frac{1}{\sec\,\theta}\) = \(\frac{15}{17}.\)

    Now, \(\frac{\tan\theta}{\sec\theta}\) = \(\cfrac{\frac{\sin\theta}{\cos\theta}}{\frac{1}{\cos\theta}}\) = sinθ.

    \(\therefore\) sin θ = \(\frac{\tan\,\theta}{\sec\,\theta}\) = \(\cfrac{\frac{8}{15}}{\frac{17}{15}}\) = \(\frac{8}{17}.\)

    Now, \(\frac{(2+2\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(2-2\cos\theta)}\)

    \(=\cfrac{\left(2+2\times \frac{8}{17}\right) \left(1- \frac{8}{17}\right)}{\left(1+ \frac{15}{17}\right)\left(2-2\times \frac{15}{17}\right)}\)

    \(=\cfrac{\left(\frac{34+16}{17}\right) \left(\frac{17-8}{17}\right)}{\left(\frac{17+15}{17}\right)\left(\frac{34-30}{17}\right)}\)

    \(=\frac{50\times 9}{32\times 4}\)

    \(=\frac{25\times 9}{32\times 2}\)

    \(=\frac{225}{64}.\)

    (\(\because\) sin θ = \(\frac{8}{17}\) & cos θ = \(\frac{15}{17}\))

    SECOND METHOD:-

    \(\frac{(2+2\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(2-2\cos\theta)}\)

    \(=\frac{2(1+\sin\theta)(1-\sin\theta)}{2(1+\cos\theta)(1-\cos\theta)}\)

    \(=\frac{1-\sin^2\,\theta}{1-\cos^2\,\theta}\) (\(\because\) \((a + b)(a - b)\) \(=a^2 - b^2\))

    \(=\frac{\cos^2\theta}{\sin^2\theta}=\left(\frac{\cos\theta}{\sin\theta}\right)^2=\cot^2\theta\) (\(\because\) \(\sin^2\theta + \cos^2\theta = 1\, \& \,\cot\,\theta=\frac{\cos\theta}{\sin\theta}\))

    \(=\frac{1}{\tan^2\theta}\)

    \(=\frac{1}{\left(\frac{8}{15}\right)^2}\)

    \(=\frac{15^2}{8^2}\)

    \(=\frac{225}{64}.\)

  • Question 5
    1 / -0

    If the sum of the roots of the equation \(\mathrm{3x^2 - (3k - 2)x - (k - 6)}\) is equal to the product of its roots. Then the value of k is

    Solution

    Given equation is \(\mathrm{3x^2-(3k-2)x-(k-6)=0}\)

    Sum of the roots \(=\frac{-b}{a}=\frac{-(-(3k-2))}{3}=\frac{3k-2}{3}\)

    Product of roots \(=\frac{c}{a}=\frac{-(k-6)}{3}\)

    According to given condition \(\frac{3k-2}{3}=\frac{-(k-6)}{3}\)

    \(\Rightarrow \) 3k - 2 + k - 6 = 0

    \(\Rightarrow \) 4k = 8

    \(\Rightarrow \) k = 2

  • Question 6
    1 / -0

    If \(\alpha,\) \(\beta\) are the zeroes of the polynomial \(\mathrm{(x^2 - x - 12)}\). Then quadratic equation whose zeroes are \(2\alpha\) and \(2\beta\) is

    Solution

    Given that \(\alpha\) and \(\beta \) are zeros of the polynomial \(\mathrm{x^2-x-12}\)

    The sum of zeros \(=\alpha + \beta = \frac{-b}{a}= \frac{-(-1)}{1}=1\)

    The product of zeros \(=\alpha \beta = \frac{c}{a}=\frac{-12}{1}=-12\)

    Now, \((\alpha - \beta)^2\) \(=(\alpha + \beta)^2-4\alpha \beta\) \(=1^2 - 4\times -12 \) \(=1 + 48 = 49\)

    \(\Rightarrow \alpha - \beta=\pm 7\)

    Case I :- \(\alpha - \beta = 7\) and \(\alpha + \beta =1\)

    \(\Rightarrow 2\alpha = 8\)

    \(\Rightarrow \alpha = 4\)

    Then \(4+\alpha = 1\) \(\Rightarrow\) \(\beta = 1- 4 = -3\)

    i.e., \(\alpha = 4 \) and \(\beta = -3\)

    Case II :- \(\alpha - \beta = -7\) and \(\alpha + \beta = 1\)

    \(\Rightarrow 2\alpha = -6\)

    \(\Rightarrow \alpha = -3\)

    Then \(-3+\beta = 1\) \(\Rightarrow \beta = 1 + 3 = 4\)

    i.e., \(\alpha = - 3\) and \(\beta = 4\)

    Hence, –3 and 4 are zeros of given polynomial \(\mathrm{x^2-x-12}\)

    We want to find a quadratic equation whose zeros are \(2\alpha\) and \(2\beta\)

    i.e., quadratic equation is \((\mathrm x - 2\alpha)(\mathrm x - 2\beta)=0\)

    \(\Rightarrow \) (x - 8)(x + 6) = 0  (\(\because\) either \(\alpha = -3\) & \(\beta = 4\) or \(\alpha = 4\) and \(\beta = -3\))

    \(\Rightarrow \) \(\mathrm{x^2-2x-48=0}\)

    \(\therefore\) Required quadratic equation is \(\mathrm{x^2-2x - 48=0}\)

  • Question 7
    1 / -0

    The age-wise participation of students in the annual function of a school is shown in the following distribution:

    Age (in years) 5 – 7 7 – 9 9 – 11 11 – 13 13 – 15 15 – 17 17 – 19
    No. of students x 15 18 30 50 48 x

    The sum of frequency is 181.

    Value of x is :

    Solution

    Given that sum of frequencies = 181.

    \(\therefore\) x + 15 + 18 + 30 + 50 + 48 + x = 181

    \(\Rightarrow \) 2x + 161 = 181

    \(\Rightarrow \) 2x = 20

    \(\Rightarrow \) x = 10

    Hence, the value of x is 10.

  • Question 8
    1 / -0

    The age-wise participation of students in the annual function of a school is shown in the following distribution:

    Age (in years) 5 – 7 7 – 9 9 – 11 11 – 13 13 – 15 15 – 17 17 – 19
    No. of students x 15 18 30 50 48 x

    The sum of frequency is 181.

    Modal class is :

    Solution

    In the given distribution table the highest frequency is 50 and the interval age of highest frequency is 13 – 15.

    \(\therefore\) Modal class = Interval with highest frequency = 13 – 15.

  • Question 9
    1 / -0

    The age-wise participation of students in the annual function of a school is shown in the following distribution:

    Age (in years) 5 – 7 7 – 9 9 – 11 11 – 13 13 – 15 15 – 17 17 – 19
    No. of students x 15 18 30 50 48 x

    The sum of frequency is 181.

    Mode of the given data is : (in years)

    Solution

    The distribution table is given below:

    Age (in years) 5-7 7-9 9-11 11-13 13-15 15-17 17-19
    No. of students 10 15 18 30 50 48 10

    \(\because\) Modal class is 13-15.

    \(\therefore\) \(l\) = lower limit of modal class = 13

    h = class interval = 15 – 13 =2

    \(\mathrm f_1\) = frequency of modal class = 50

    \(\mathrm f_0\) = frequency of class before modal class = 30

    \(\mathrm f_2\) = frequency of class after modal class = 48

    Therefore, mode \(=l +\frac{f_1-f_0}{2f_1-f_0-f_2}\times h\)

    \(=13+\frac{50-30}{2\times 50-30-48}\times 2\) \(=13+\frac{20}{100-78}\times2 \) \(=13+\frac{20}{11}\) = 13 + 1.818 = 14.818.

    Hence, the mode of given distribution is 14.818.

  • Question 10
    1 / -0

    The age-wise participation of students in the annual function of a school is shown in the following distribution:

    Age (in years) 5 – 7 7 – 9 9 – 11 11 – 13 13 – 15 15 – 17 17 – 19
    No. of students x 15 18 30 50 48 x

    The sum of frequency is 181.

    Mean of the given data is:

    Solution

    Mean: -

    Age (in years) Mid-point \((\mathrm x_i)\) No. of students \((f_i)\) \(\mathrm x_i f_i\)
    5 – 7 \(\frac{5+7}{2}=6\) 10 60
    7 – 9 \(\frac{7+9}{2}=8\) 15 120
    9 – 11 \(\frac{9+11}{2}=10\) 18 180
    11 – 13 \(\frac{11+13}{2}=12\) 30 360
    13 – 15 \(\frac{13+15}{2}=14\) 50 700
    15 – 17 \(\frac{15+17}{2}=16\) 48 768
    17 – 19 \(\frac{17+19}{2}=18\) 10 180
        \(\sum f_i = 181\) \(\sum f_i\mathrm x_i = 2368\)

    We get \(\sum f_i = 181\) & \(\sum f_i \mathrm x_i = 2368\)

    \(\therefore\) Mean \(=\frac{\sum f_i \mathrm x_i}{\sum f_i}=\frac{2368}{181}=13.083\)

    Hence, mean of given distribution is 13.083.

  • Question 11
    1 / -0

    Solution of following pair of equations is

    \(\frac{35}{\mathrm x+y}+\frac{14}{\mathrm x-y}=19;\) \(\frac{14}{\mathrm x+y}+\frac{35}{\mathrm x-y}=37\)

    Solution

    Given system of equations are

    \(\frac{35}{\mathrm x+y}+\frac{14}{\mathrm x-y}=19;\)

    And \(\frac{14}{\mathrm x+y}+\frac{35}{\mathrm x-y}=37\)

    Put \(\frac{1}{\mathrm x+y}=X\) and \(\frac{1}{\mathrm x-y}=Y\)

    The system of equation change to

    35 X + 14Y = 19  ..............(1)

    And 14X + 35Y = 37 ............(2)

    Multiplying equation (1) by 2 and equation (2) by 5,

    We get 70X + 28Y = 38  ...........(3)

    and 70X + 175Y = 185 ............(4)

    Now subtracting equation (3) from equation (4), we get (70X + 175Y) – (70X + 28Y) = 185 – 38

    \(\Rightarrow\) 147Y = 147

    \(\Rightarrow\) \(Y = \frac{147}{147}=1\)

    Now, putting Y= 1 in equation (1), we get 35X + 14 = 19

    \(\Rightarrow\) 35X = 19 − 14 = 5

    \(\Rightarrow\) \(X = \frac{5}{35}=\frac{1}{7}\)

    \(\therefore \) X = \(\frac{1}{7}\) & Y = 1

    \(\Rightarrow\) x + y = 7 & x - y = 1 (\(\because\) x = \(\frac{1}{\mathrm x+y}\) & Y = \(\frac{1}{\mathrm x-y}\))

    \(\Rightarrow\) (x + y) + (x - y) = 7 + 1 = 8

    \(\Rightarrow\) 2x = 8

    \(\Rightarrow\) x = 4

    Now, putting x = 4 in x + y = 7, we get 4 + y = 7

    \(\Rightarrow\) y = 7 - 4 = 3

    \(\therefore \) x = 4 & y = 3 is solution of given system of equations.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now