We have tan θ = \(\frac{8}{15}\)
\(\therefore\) sec θ = \(\sqrt{1+\tan^2\theta} \) (\(\because\) 1 + \(\tan^2\theta = \sec^2\theta\))
\(=\sqrt{1+\frac{64}{225}}\)
\(=\sqrt{\frac{225+64}{225}}\)
\(=\sqrt{\frac{289}{225}}\)
\(=\frac{17}{15}.\)
\(\therefore\) cos θ = \(\frac{1}{\sec\,\theta}\) = \(\frac{15}{17}.\)
Now, \(\frac{\tan\theta}{\sec\theta}\) = \(\cfrac{\frac{\sin\theta}{\cos\theta}}{\frac{1}{\cos\theta}}\) = sinθ.
\(\therefore\) sin θ = \(\frac{\tan\,\theta}{\sec\,\theta}\) = \(\cfrac{\frac{8}{15}}{\frac{17}{15}}\) = \(\frac{8}{17}.\)
Now, \(\frac{(2+2\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(2-2\cos\theta)}\)
\(=\cfrac{\left(2+2\times \frac{8}{17}\right) \left(1- \frac{8}{17}\right)}{\left(1+ \frac{15}{17}\right)\left(2-2\times \frac{15}{17}\right)}\)
\(=\cfrac{\left(\frac{34+16}{17}\right) \left(\frac{17-8}{17}\right)}{\left(\frac{17+15}{17}\right)\left(\frac{34-30}{17}\right)}\)
\(=\frac{50\times 9}{32\times 4}\)
\(=\frac{25\times 9}{32\times 2}\)
\(=\frac{225}{64}.\)
(\(\because\) sin θ = \(\frac{8}{17}\) & cos θ = \(\frac{15}{17}\))
SECOND METHOD:-
\(\frac{(2+2\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(2-2\cos\theta)}\)
\(=\frac{2(1+\sin\theta)(1-\sin\theta)}{2(1+\cos\theta)(1-\cos\theta)}\)
\(=\frac{1-\sin^2\,\theta}{1-\cos^2\,\theta}\) (\(\because\) \((a + b)(a - b)\) \(=a^2 - b^2\))
\(=\frac{\cos^2\theta}{\sin^2\theta}=\left(\frac{\cos\theta}{\sin\theta}\right)^2=\cot^2\theta\) (\(\because\) \(\sin^2\theta + \cos^2\theta = 1\, \& \,\cot\,\theta=\frac{\cos\theta}{\sin\theta}\))
\(=\frac{1}{\tan^2\theta}\)
\(=\frac{1}{\left(\frac{8}{15}\right)^2}\)
\(=\frac{15^2}{8^2}\)
\(=\frac{225}{64}.\)