Self Studies

Mix Test 7

Result Self Studies

Mix Test 7
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If 5 times the fifth term of an AP is equal to 8 times its eight term. Then 13th term of AP is

    Solution

    Let the first term of AP is a and common difference of AP is d.

    Therefore, the fifth term of given AP is \(a_5 = a+4d\)

    And the eight term of AP is \(a_8= a+7d\)

    Given that 5 times the fifth term of AP is equal to 8 times its eight term.

    Therefore, \(5a_5 = 8a_8\)

    \(\Rightarrow\) 5(a + 4d) = 8(a + 7d)

    \(\Rightarrow\) 5a + 20d = 8a + 56d

    \(\Rightarrow\) 8a − 5a + 56d − 20d = 0

    \(\Rightarrow\) 3a + 36d = 0

    \(\Rightarrow\) 3(a + 12d) = 0

    \(\Rightarrow\) a + 12d = 0

    \(\Rightarrow\) \(a_{13}= 0\)  (Because, 13th term of given AP is \(a_{13}=a+12d\))

    Hence, \(13^{th}\) term of given AP is 0.

  • Question 2
    1 / -0

    \(\frac{\tan A}{(1-\cot A)} + \frac{\cot A}{(1-\tan A)} \)= ?

    Solution

    \(\frac{\tan A}{1-\cot A}+\frac{\cot A}{1-\tan A}\) \(=\cfrac{\frac{\sin A}{\cos A}}{1-\frac{\cos A}{\sin A}}\) + \(\cfrac{\frac{\cos A}{\sin A}}{1-\frac{\sin A}{\cos A}}\) \(\left(\therefore \tan\theta =\frac{\sin\theta}{\cos\theta}\, \&\, \cot \theta =\frac{\cos \theta}{\sin\theta}\right)\)

    \(=\frac{\sin^2A}{\cos A (\sin A-\cos A)}\)\(+\frac{\cos^2A}{\sin A(\cos A-\sin A)}\) \(=\frac{\sin^3A-\cos^3A}{\sin A \cos A(\sin A-\cos A)}\)

    \(=\frac{(\sin A -\cos A)(\sin^2A +\sin A \cos A + \cos^2A)}{\sin A \cos A (\sin A-\cos A)}\) \((\because a^3 - b^3 = (a-b) (a^2+ab+b^2))\)

    \(=\frac{\sin A \cos A+\sin^2A+\cos^2A}{\sin A \cos A}\) \(=\frac{\sin A\cos A}{\sin A \cos A}\)\(+\frac{\sin^2A}{\sin A \cos A}\)\(+\frac{\cos^2A}{\sin A \cos A}\)

    \(=1+\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}\) \(=1+\tan A + \cot A\)

  • Question 3
    1 / -0

    The HCF and LCM of \(\frac{8}{9}, \frac{10}{27}\) and \(\frac{16}{81}\) are respectively.

    Solution

    Given numbers are \(\frac{8}{9}, \frac{10}{27}\) and \(\frac{16}{81}\)

    Numerators of given fraction numbers are 8, 10 and 16.

    Denominators of given fraction numbers are 9, 27 and 81.

    HCF of 8, 10 and 16= HCF (8, 10, 16) = 2.

    LCM of 8, 10 and 16= LCM (8, 10, 16) = 80

    HCF of 9, 27 and 81= HCF (9, 27, 81) = 9.

    LCM of 9, 27 and 81= LCM (9, 27, 81) = 81.

    \(HCF\left(\frac{8}{9}, \frac{10}{27}, \frac{16}{81}\right)\) \(=\frac{HCF\,of\,numerator}{LCM\,of\,denominator}\) \(=\frac{HCF(8, 10, 16)}{LCM(9, 27, 81)}=\frac{2}{81}\)

    And \(LCM \left(\frac{8}{9}, \frac{10}{27}, \frac{16}{81}\right)\) \(=\frac{LCM\,of\,numerator}{HCF\,of\,denominator}\) \(=\frac{LCM(8,10,16)}{HCF(9, 27, 81)}=\frac{80}{9}\)

    Hence, HCF and LCM of \(\frac{8}{9}, \frac{10}{27}\) and \(\frac{16}{81}\) are \(\frac{2}{81}\) and \(\frac{80}{9}\) respectively.

  • Question 4
    1 / -0

    Let the points A(k + 1, 2k), B(3k, 2k + 3) and C(5k − 1, 5k) are collinear. Then the value of k is

    Solution

    Given that points A(k+1, 2k), B(3k, 2k+3) and C(5k – 1, 5k) are collinear.

    \(\therefore\) Points A, B & C do not form any triangle.

    \(\therefore\) Area of triangle ABC = 0

    \(\Rightarrow \frac{1}{2}(\mathrm x_1(y_2-y_3)\) \(+\mathrm x_2 (y_3-y_1)\) \(+\mathrm x_3(y_1-y_2))= 0\) 

    \(\Rightarrow\) [(k + 1)(2k + 3 − 5k) + 3k(5k − 2k) + (5k − 1)(2k − (2k + 3))] = 0

    \(\Rightarrow\) (k + 1) (3 − 3k) + 3k × 3k + (5k − 1) (−3) = 0

    \(\Rightarrow\) (3k + 3 − \(3k ^2\) − 3k + \(9k^2\) − 15k + 3) = 0

    \(\Rightarrow\) \(6k^2-15k+6=0\) \(\Rightarrow 2k^2 -5k+2=0\)

    \(\Rightarrow (2k -1)(k-2)=0\)

    \(\Rightarrow k = \frac{1}{2}\) or k = 2.

  • Question 5
    1 / -0

    One card is drawn at random from a well-shuffled deck of 52 cards. Then the probability of getting a face card is

    Solution

    Since, total face card in a deck of 52 cards \(=3\times 4= 12\)

    (\(\because\) Jack, queen and king cards are face cards)

    And total number of cards in a deck = 52.

    The probability of getting a face card

    \(=\frac{Total\,no.\,of\,face\,cards}{Total\,no.\,of\,cards\,in \,deck}\) \(=\frac{12}{52}=\frac{3}{13}\)

    Hence, the probability of getting a face card is \(\frac{3}{13}\).

  • Question 6
    1 / -0

    The area of a square is the same as the area of a circle. Then the ratio of their perimeters is

    Solution

    We know that the area and the perimeter of a square whose side is a are given by \(a^2\) and 4a, respectively.

    And the area and perimeter of a circle whose radius is r are given by \(\pi r^2\) and 2πr, respectively.

    Since, given that the area of a square is the same as the area of a circle.

    Therefore, \(a^2 = \pi r^2\)

    \(\Rightarrow \frac{a^2}{r^2}=\pi\)

    \(\Rightarrow \frac{a}{r}=\sqrt \pi\) (By taking root both sides)

    \(\Rightarrow \frac{4a}{2\pi r}=\frac{4\sqrt \pi}{2\pi}=\frac{2}{\sqrt \pi}\) (Multiplying both sides by \(\frac{4}{2\pi}\))

    \(\Rightarrow \frac{Perimeter\,of\,the\,square}{Perimater\,of\,the\,circle}\) \(=\frac{2}{\sqrt \pi}\)

    (Because, perimeter of the square = 4a and perimeter of the circle = 2πr)

    Hence, the ratio of perimeter of the square and the circle is \(2:\sqrt \pi\).

  • Question 7
    1 / -0

    If 1 is a root of the equation \(ay^2 + ay + 3 = 0\) and \(y^2 + y + b = 0\). Then the value of ab is

    Solution

    Given that 1 is a root of the equation \(ay^2 + ay + 3 = 0\) and \(y^2 + y+b = 0\).

    Let the another root of the equation \(ay^2 + ay + 3 = 0\) is p and another root of the equation \(y^2 + y + b = 0\) is q.

    Therefore, the sum of the roots are 1 + p \(=\frac{-a}{a}=-1\) and 1 + q \(=\frac{-1}{1}=-1\)

    \(\Rightarrow\) p = –1 – 1 = –2 and q = –1 – 1 = – 2

    And the product of the roots are \(1\times p = \frac{3}{a}\) and \(1\times q=\frac{b}{1}=b\)

    \(\Rightarrow a = \frac{3}{p}=\frac{3}{-2}=-\frac{3}{2}\) and b = q = −2.

    Now, ab \(=\frac{-3}{2}\times -2=3\)

    Hence, ab = 3.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now