Given,
The size of the image of object A and B is the same, hence
$${h_A}^\prime = {h_B}^\prime $$
The size of object A is four times that of B, hence
$${h_A} = 3{h_B}$$
Now the magnification of object A can be given as
$${m_A} = \dfrac{{{h_A}^\prime
}}{{{h_A}}}$$ ……
(1)
Similarly for object B
$${m_B} = {\text{ }}\dfrac{{{h_B}^\prime
}}{{{h_B}}}$$ …….
(2)
From equation (1) and (2) the ratio of magnification is
given as
$$\dfrac{{{m_A}}}{{{m_B}}} =
\dfrac{{{h_A}^\prime }}{{{h_A}}}{\text{ }} \times {\text{ }}\dfrac{{{h_B}}}{{{h_B}^\prime
}} \Rightarrow \dfrac{{{m_A}}}{{{m_B}}} = \dfrac{{{h_A}^\prime
}}{{3{h_B}}}{\text{ }} \times {\text{ }}\dfrac{{{h_B}}}{{{h_A}^\prime }}$$
$$\therefore \dfrac{{{m_A}}}{{{m_B}}}
= \dfrac{1}{3}$$ ……. (3)
Now the magnification formula is given as
$$m = \dfrac{f}{{f - u}}$$
Therefore equation (3) becomes
$$\dfrac{{{m_A}}}{{{m_B}}} =
\dfrac{{f - {u_B}}}{{f - {u_A}}} \Rightarrow \dfrac{1}{3} = \dfrac{{ - 7.5 -
{u_B}}}{{ - 7.5 + 30}}$$
$$ - {u_B} = \dfrac{{22.5}}{3}
+ 10 \Rightarrow {u_B} = - 17.5cm$$
Hence the object B is placed at $$-17.5\;cm$$ from the mirror.