Self Studies
Selfstudy
Selfstudy

Electricity Test - 52

Result Self Studies

Electricity Test - 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equivalent resistance of parallel combination is:
    Solution
    Consider two resistors having resistances $$R_1$$ and $$R_2$$.
    The equivalent resistance of $$R_1$$ and $$R_2$$ in parallel is,
    $$\dfrac{1}{R_{eq}}= \dfrac{1}{R_1}+\dfrac{1}{R_2}$$

    $$\implies R_{eq}=\dfrac{R_1R_2}{R_1+R_2}$$
    For any values of $$R_1$$ and $$R_2$$, $$R_{eq}$$ will be less than $$R_1$$ and $$R_2$$. 
    For example, 
    Let $$R_1=2\ \Omega$$
    $$R_2=6\ \Omega$$
    Then,
    Equivalent resistance  of $$R_1$$ and $$R_2$$ in parallel,
    $$ R_{eq}=\dfrac{R_1R_2}{R_1+R_2}$$

    $$ R_{eq}=\dfrac{2\times 6}{2+8}$$

    $$ R_{eq}=\dfrac{12}{8}$$

    $$ R_{eq}=1.5\ \Omega$$
    $$\implies R_{eq} \lt R_1\ \text{and}\ R_{eq} \lt R_2$$
  • Question 2
    1 / -0
    Smallest commercial unit of energy is
    Solution
    Smallest commercial unit of energy is called Watt hour $$(Wh)$$. One watt hour is the energy consumed when $$1 \ watt$$ of power is used for $$1 \ hour.$$
  • Question 3
    1 / -0
    Convert $$28.8  kJ$$ into kilo watt hour.
    Solution
    We know that $$1 kWh=3.6 \times 10^6$$  $$Joules$$
    $$E=28.8 \times 10^3 $$ $$ Joules$$

    $$E = \dfrac{28.8 \times {10}^{3}}{3.6 \times {10}^{6}}$$
       $$= 8 \times {10}^{-3}  kwh$$
  • Question 4
    1 / -0
    If n resistance (each R) are connected in parallel then the resultant will be
    Solution
    Equivalent resistance of parallel combination        

    $$\dfrac{1}{R_{eq}} = \dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}+.........$$

    Given, Resistanvce of all resistors $$=R$$
    $$\therefore$$  $$\dfrac{1}{R_{eq}} = \dfrac{1}{R}+\dfrac{1}{R}+\dfrac{1}{R}+.........n$$ terms

    OR    $$\dfrac{1}{R_{eq}} = \dfrac{n}{R}$$        

    $$\implies$$   $$R_{eq} = \dfrac{R}{n}$$
  • Question 5
    1 / -0
    A certain household has consumed $$250$$ units of energy during a month. How much energy is this in joules?
    Solution
    Hint: Conversion of KWh to joule.

    Step 1: Commercial unit of energy is KWh.

                 $$1\; KWh = 10^3\; W = 10^3\; JS^{-1}$$

                  $$1\;hr = 60\times60 = 3600\;sec$$
                  
                Therefore, $$1\;KWh = 1\; KW \times1\;hr$$
                                                  $$=10^3 \times 3600$$
                                                  $$=3.6 \times 10^6 \;J$$

    Step 2: Calculation according to question

                  Energy consumption $$=250\;KWh$$
                                                      $$= 250\times3.6\times10^6\;J$$
                                                      $$=900\times10^6\;J$$
                                                      $$=9\times10^8\;J$$   or   $$900\;MJ$$

    Hence, Option (B) is correct.


  • Question 6
    1 / -0
    Calculate the monthly bill if a heater of 100 watt is used at the rate of rs. 1 per unit for 1 hour daily.
    Solution
    Given :       $$P=0.1$$ kW           $$t = 1$$ hour per day
    Energy consumed per day     $$E = Pt = 0.1\times 1 = 0.1$$ kWh per day
    Total energy consumed per month  $$E_T = 30\times 0.1 = 3$$ kWh per month
    Cost of electricity  $$ =Re$$ $$ 1 $$ per unit i.e per kWh
    $$\therefore$$  Monthly bill $$ = Re.$$ $$1\times 3   =$$Rs. $$3$$ per month
  • Question 7
    1 / -0
    Commercial unit of energy is .......................
    Solution
    Commercial unit of electrical energy is kilowatt hour $$\left(kWh\right)$$
    $$1  kwh = 3.6 \times {10}^{6}  J$$
  • Question 8
    1 / -0
    Whenever an electric current is passed through a conductor, it gets heated up. this means that a part of electrical energy given to the conductor gets converted to 
    Solution
    Whenever an electric current is passed through a conductor, it gets heated up due to the movement of electrons inside the conductor. This indicates that a part of electrical energy gets converted into heat energy.
  • Question 9
    1 / -0
    Imagine that you have a 100$$\Omega$$ resistor. You want to add a resistor in series with this 100$$\Omega$$ resistor in order to limit the current to 0.5A when $$110 $$ Volts is placed across two resistors in series. How much resistance should you use?
    Solution
    Given :    $$V = 110$$ volts          $$I = 0.5$$ A               $$R_1 = 100\Omega$$
    Let a resistance $$R$$ is connected in series with  $$R_1$$.
    Using Ohm's law,  $$V = I(R_1+R)$$
    $$\therefore$$    $$110 = 0.5(100+R)$$                       $$\implies R = 120\Omega$$
  • Question 10
    1 / -0
    The attached circuit diagram shows connection of 3 resistors. All are connected in parallel . Thus what is the equivalent resistance.

    Solution
    Equivalent resistance of resistors connected in parallel       $$\dfrac{1}{R_{eq}}  =\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}$$
    $$\therefore$$    $$\dfrac{1}{R_{eq}}  =\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}$$            $$\implies R_{eq} = 1$$ ohm

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now