Self Studies

Differentiation Test 16

Result Self Studies

Differentiation Test 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In a combination, the ordering of the selected objects is immaterial whereas in a permutation, the ordering is essential.
    Solution
    Combination of few things .
    The order of selected  things is not specified .
    Combination is basically selection hence ordering in immaterial .
    Permtation of few things the order of selected things is specified .
    Permutation basically means selecting and arranging .
    Hence ordering is essential .
  • Question 2
    1 / -0
    If $$y={(\tan{x})}^{\displaystyle{(\tan{x})}^{\displaystyle\tan{x}}}$$, then find $$\displaystyle\frac{dy}{dx}$$ at $$\displaystyle x=\frac{\pi}{4}$$.
    Solution
    Taking $$\log$$ on both sides, we get
    $$\log{y}={(\tan{x})}^{\displaystyle\tan{x}}\log{\tan{x}}$$
    Again taking $$\log$$ on both the sides
    $$\log{\log{y}}=[\tan{x}\log{\tan{x}}]+\log{\log{\tan{x}}}$$
    Differentiating w.r.t. $$x$$, we get
    $$\displaystyle\frac{1}{y\log{y}}\frac{dy}{dx}=\log { \tan { x } \frac { d }{ dx } \left( \tan { x }  \right) +\tan { x } \frac { d }{ dx } \left( \log { \tan { x }  }  \right) +\frac { d }{ dx } \left( \log { \log { \tan { x }  }  }  \right)  } $$

    $$\displaystyle \frac{dy}{dx}=\log { \tan { x } .\sec ^{ 2 }{ x } +\tan { x } .\frac { \sec ^{ 2 }{ x }  }{ \tan { x }  } +\frac { \sec ^{ 2 }{ x }  }{ \tan { x } .\log { \tan { x }  }  }  } $$
    $$\displaystyle \frac { dy }{ dx } =y\log { y.\sec ^{ 2 }{ x } \left[ \log { \tan { x } +1+\frac { 1 }{ \tan { x } .\log { \tan { x }  }  }  }  \right]  } $$
    At $$\displaystyle x=\frac{\pi}{4}$$, $$y=1$$ and $$\log{y}=0$$
    So, putting this values in the equation of $$\displaystyle \frac { dy }{ dx } $$, we get
    $$\displaystyle\therefore{\left(\frac{dy}{dx}\right)}_{\displaystyle x=\frac{\pi}{4}}=0$$
  • Question 3
    1 / -0
    There are $$6$$ boxes numbered $$1, 2 ....... 6$$. Each box is to be filled up either with a red or a green ball in such a way that at least $$1$$ box contains a green ball and the boxes containing green balls are consecutively numbered. The total number of ways in which this can be done is:
    Solution
    (B) The number of ways in which 1 green ball can be put $$=6$$ . The number of ways in which two green balls can be put such that the boxes are consecutive 
    $$=5$$ $$(i.e., (1, 2),(2, 3),(3, 4),(4, 5),(5, 6))$$

    Similarly, the number of ways in which three green balls can be put 
    $$=4( i.e. (1, 2, 3),(2, 3, 4),(3, 4, 5),(4, 5, 6))$$
    $$\cdots \cdots \cdots \cdots \cdots $$ and so on.
    $$\therefore $$ Total number of ways of doing this
    $$=6+5+4+3+2+1=21$$
  • Question 4
    1 / -0
    If $$\displaystyle y=5^{3-x^2}+(3-x^2)^5$$, then $$\displaystyle \frac{dy}{dx}=$$
    Solution
    $$\displaystyle \frac { d }{ dx } \left( 5^{ 3-x^{ 2 } }+(3-x^{ 2 })^{ 5 } \right) $$
    $$={ 5 }^{ 3-{ x }^{ 2 } }\log _{ e }{ 5\displaystyle \frac { d }{ dx } \left( 3-{ x }^{ 2 } \right) +5{ \left( 3-{ x }^{ 2 } \right)  }^{ 4 }\displaystyle \frac { d }{ dx } { \left( 3-{ x }^{ 2 } \right)  } } $$
    $$={ 5 }^{ 3-{ x }^{ 2 } }\log _{ e }{ 5\left( -2x \right)  } +5{ \left( 3-{ x }^{ 2 } \right)  }^{ 4 }\left( -2x \right) $$
    $$=-2x\left( { 5 }^{ 3-{ x }^{ 2 } }\log _{ e }{ 5+5\left( 3-{ x }^{ 2 } \right)  }  \right) $$
  • Question 5
    1 / -0
    If $$y=\log_{3}x+3 \log_{e} x+2 \tan x$$, then $$\displaystyle \frac{dy}{dx}=$$
    Solution
    $$\displaystyle \frac { d }{ dx } \left( \log _{ 3 }{ x } +3\log _{ e }{ x } +2\tan { x }  \right) $$

    $$=\displaystyle \frac { d }{ dx } \left( \displaystyle \frac { \log_e { x }  }{ \log { 3 }  } +3\log_e { x } +2\tan { x }  \right) $$

    $$=\displaystyle \frac { 1 }{ x\log _{ e }{ 3 }  } +\displaystyle \frac { 3 }{ x } +2\sec ^{ 2 }{ x } $$
  • Question 6
    1 / -0
    If $$\displaystyle y=e^{x \log a}+e^{a \log x}+e^{a \log a}$$, then $$\displaystyle \frac{dy}{dx}=$$
    Solution
    Let  $$y=\displaystyle e^{x log a}+e^{a log x}+e^{a log a}$$
    $$={ e }^{ \log _{ e }{ { a }^{ x } }  }+{ e }^{ \log _{ e }{ { x }^{ a } }  }+{ e }^{ \log _{ e }{ { a }^{ a } }  }$$
    $$={ a }^{ x }+{ x }^{ a }+{ a }^{ a }$$ ......... Since $${ e }^{ \log _{ e }{ x }  }=x$$
    $$\displaystyle \frac { dy }{ dx } =\displaystyle \frac { d }{ dx } \left( { a }^{ x }+{ x }^{ a }+{ a }^{ a } \right) $$
    $$={ a }^{ x }\log { a } +a.{ x }^{ a-1 }$$
  • Question 7
    1 / -0
    If $$f'(x)=\sin x+\sin 4x\cdot \cos x$$, then $$f'\left (2x^2+\displaystyle \frac {\pi}{2}\right )$$ is
    Solution
    $$f'(x)=\sin x+\sin 4x\cdot \cos x$$
    $$f'\left (2x^2+\displaystyle \frac {\pi}{2}\right )$$=$$\displaystyle \frac { d }{ dx } \left( 2{ x }^{ 2 }+\displaystyle \frac { \pi  }{ 2 }  \right) \left[ \sin { \left( 2{ x }^{ 2 }+\displaystyle \frac { \pi  }{ 2 }  \right) +\sin { 4 } \left( 2{ x }^{ 2 }+\displaystyle \frac { \pi  }{ 2 }  \right) .\cos { \left( 2{ x }^{ 2 }+\displaystyle \frac { \pi  }{ 2 }  \right)  }  }  \right] $$
    $$=4x\left[ \cos { 2{ x }^{ 2 }-\sin { 8 } { x }^{ 2 }.\sin { 2{ x }^{ 2 } }  }  \right] $$
  • Question 8
    1 / -0
    If $$y=|\cos x|+|\sin x|$$, then $$\displaystyle \dfrac {dy}{dx}$$ at $$x=\dfrac {2\pi}{3}$$ is
    Solution
    $$\displaystyle \frac { dy }{ dx } =\displaystyle \frac { d }{ dx } \left( |cosx|+|sinx| \right) $$
    $$=-\sin { x } +\cos { x } $$ at $$x=\displaystyle \frac { 2\pi  }{ 3 }$$
    $$=\left| -\sin { \displaystyle \frac { 2\pi  }{ 3 }  }  \right| +\left| \cos { \displaystyle \frac { 2\pi  }{ 3 }  }  \right| $$
    $$=\displaystyle \frac { \sqrt { 3 }  }{ 2 } -\displaystyle \frac { 1 }{ 2 } $$
    $$=\displaystyle \frac { 1 }{ 2 } \left( \sqrt { 3 } -1 \right) $$
  • Question 9
    1 / -0
    Find the derivative of $$\sec^{-1}\left (\displaystyle \frac {x+1}{x-1}\right )+\sin^{-1}\left (\displaystyle \frac {x-1}{x+1}\right )$$
    Solution
    Let $$y=\sec^{-1}\left (\displaystyle \frac {x+1}{x-1}\right )+\sin^{-1}\left (\displaystyle \frac {x-1}{x+1}\right )$$
    $$y=\cos ^{ -1 }{ \left( \displaystyle \frac { x-1 }{ x+1 }  \right) +\sin ^{ -1 }{ \left( \displaystyle \frac { x-1 }{ x+1 }  \right)  }  } =\displaystyle \frac { \pi  }{ 2 } $$
    $$\therefore \displaystyle \frac { dy }{ dx } =\displaystyle \frac { d }{ dx } \left(\displaystyle  \frac { \pi  }{ 2 }  \right) =0$$
    $$\because \sin ^{ -1 }{ \theta +\cos ^{ -1 }{ \theta  } =\displaystyle \frac { \pi  }{ 2 }  } $$
  • Question 10
    1 / -0
    If $$y=\log_{10}x+\log_x 10+\log_xx+\log_{10} 10$$, then $$\displaystyle \frac{dy}{dx}=$$
    Solution
    $$\displaystyle \dfrac { d }{ dx } \left( \log _{ 10 }{ x+\log _{ x }{ 10+\log _{ x }{ x+\log _{ 10 }{ 10 }  }  }  }  \right) $$
    $$=\displaystyle \dfrac { 1 }{ x\log _{ e }{ 10 }  } +\displaystyle \dfrac { \left( -\log _{ e }{ 10\left( \displaystyle \dfrac { 1 }{ x }  \right)  }  \right)  }{ { \left( \log_e { x }  \right)  }^{ 2 } } $$
    $$=\displaystyle \dfrac { 1 }{ x\log _{ e }{ 10 }  } -\displaystyle \dfrac { \log _{ e }{ 10 }  }{ x{ \left( \log_e { x }  \right)  }^{ 2 } } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now