Self Studies

Differentiation Test 17

Result Self Studies

Differentiation Test 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$y=logx^3+3 sin^{-1}x+kx^2$$, then find $$\displaystyle \frac {dy}{dx}$$
    Solution
    Here, $$y=\log x^3+3 \sin^{-1} x+kx^2$$

    On differentiating we get

    $$\displaystyle \dfrac {dy}{dx}=\dfrac {d}{dx}[\log x^3]+\dfrac {d}{dx}[3 \sin^{-1}x]+\dfrac {d}{dx}[kx^2]$$

    $$=3\displaystyle \dfrac {d}{dx}[\log x]+3\dfrac {d}{dx}(\sin^{-1}x)+k\dfrac {d}{dx}(x^2)$$

    $$=3\cdot \displaystyle \dfrac {1}{x}+3\cdot \dfrac {1}{\sqrt {1-x^2}}+k(2x)$$
  • Question 2
    1 / -0
    If $$\displaystyle y=\frac { x }{ a+\displaystyle\frac { x }{ b+\displaystyle\frac { x }{ a+\displaystyle\frac { x }{ b+.....\infty  }  }  }  } $$, then $$\cfrac{dy}{dx} =$$

    Solution
    $$\displaystyle y = \frac{x}{a+\frac{x}{b+y}}$$
    $$\Rightarrow \displaystyle y =\frac{x(b+y)}{ab+ay+x}$$
    $$\Rightarrow aby+ay^2+xy=bx+xy\Rightarrow aby+ay^2=bx$$
    Differentiating both sides w.r.t $$x$$
    $$\Rightarrow\displaystyle  (ab+2ay)\frac{dy}{dx}=b\therefore \frac{dy}{dx}=\frac{b}{ab+2ay}$$
  • Question 3
    1 / -0
    Given : $$f(x)=4x^3-6x^2\cos2a+3x \sin 2a.\sin 6a+\sqrt{\ln (2a-a^2)}$$ then 
    Solution
    $$f'(x)=12x^{2}-12xcos2a+3sin2a.sin6a+0$$
    $$f'(1/2)=\frac{12}{4}-\frac{12}{2}cos2a+3sin2a.sin6a$$
    $$=3-6cos2a+1.5(cos4a-cos8a)$$
    So, it will alwyas be greater than $$0$$
  • Question 4
    1 / -0
    If $$y = sec^{-1}\left(\displaystyle\frac{\sqrt x + 1}{\sqrt x - 1}\right) + \sin^{-1}\left(\displaystyle\frac{\sqrt x - 1}{\sqrt x + 1}\right)$$, then $$\displaystyle\frac{dy}{dx}$$ equals
    Solution
    $$y = sec^{-1}\left(\displaystyle\frac{\sqrt x + 1}{\sqrt x - 1}\right) +

    \sin^{-1}\left(\displaystyle\frac{\sqrt x - 1}{\sqrt x + 1}\right)$$
    $$y=\cos ^{ -1 }{ \left(\displaystyle  \frac { \sqrt { x } -1 }{ \sqrt { x } +1 }  \right) +\sin ^{ -1 }{ \left(\displaystyle  \frac { \sqrt { x } -1 }{ \sqrt { x } +1 }  \right)  }  } =\displaystyle \frac { \pi  }{ 2 } $$ ............. $$\because \sin ^{ -1 }{ \theta +\cos ^{ -1 }{ \theta  } =\displaystyle \frac { \pi  }{ 2 }  } $$
    $$\therefore \displaystyle \frac { dy }{ dx } =\displaystyle \frac { d }{ dx } \left(\displaystyle  \frac { \pi  }{ 2 }  \right) =0$$
  • Question 5
    1 / -0
    The solution set of $${f}'(x)>{g}'(x)$$ where $$f(x)=\displaystyle \frac{1}{2}(5^{2x+1})$$ & $$g(x)= 5^x+4x(\ln 5)$$ is 
    Solution
    Given, $$f(x)= \dfrac {1}{2}(5^{2x+1})$$
    $$f'(x)= 5^{2x+1}\times \log 5$$
    $$g'(x)=5^{x}l\log 5 +4\ln 5=\ln 5(5^{x}+4)$$
    $$f'(x)>g'(x)$$
    $$=>5\times 5^{2x}>(5^{x}+4)$$
    Let $$t=5^{x}$$
    $$=> 5t^{2}-t-4>0$$
    $$=>(t-1)(t+\frac{4}{5})>0$$$$=>t>1$$ or $$ t>-\frac{4}{5}$$
    $$=>5^{x}>5^{0} =>x>0$$
    so, $$x>0$$
  • Question 6
    1 / -0

    Directions For Questions

    If f: $$R\rightarrow R$$ and $$f(x)=g(x)+h(x)$$ where $$g(x)$$ is a polynomial and $$h(x)$$ is a continuous and differentiable bounded function on both sides, then $$f(x)$$ is one-one, we need to differentiate $$f(x)$$. If $$f'(x)$$ changes sign in domain of $$f$$, then $$f $$ is many-one else one-one.

    ...view full instructions

    $$f:R\rightarrow R$$ and $$\displaystyle f(x)=\frac {x(x^4+1)(x+1)+x^4+2}{x^2+x+1}$$, then $$f(x)$$ is
    Solution
    $$\displaystyle f(x)=\frac {x(x^4+1)(x+1)+x^4+2}{x^2+x+1}$$
    $$\displaystyle \quad \quad =\frac {x(x^4+1)(x+1)+(x^4+1)+1}{x^2+x+1}$$
    $$\displaystyle \quad \quad =\frac {(x^4+1)(x^2+x+1)+1}{x^2+x+1}$$
    $$\displaystyle \quad \quad =(x^4+1)+\frac {1}{x^2+x+1}$$
    $$\displaystyle f'(x) =4x^3-\frac {2x+1}{(x^2+x+1)^2}=$$ not always positive or negative
    Thus, $$f$$ is many one. 
    Also range and co-domain of $$f$$ are not same,
    Hence is many-one into function
  • Question 7
    1 / -0
    Let $$\displaystyle f\left( \frac { { x }_{ 1 }+{ x }_{ 2 }+...+{ x }_{ n } }{ n }  \right) =\frac { f\left( { x }_{ 1 } \right) +f\left( { x }_{ 2 } \right) +...+f\left( { x }_{ n } \right)  }{ n } $$ where all $${ x }_{ i }\in R$$ are independent to each other and $$n\in N$$. if $$f(x)$$ is differentiable and $$f'\left( 0 \right) =a,f\left( 0 \right) =b$$ and $$f'\left( x \right) $$ is equal to
    Solution
    Differentiating the given equation w.r.t. $${ x }_{ 1 },$$ we get 
    $$\displaystyle \dfrac { 1 }{ n } f'\left( \dfrac { { x }_{ 1 }+{ x }_{ 2 }+...+{ x }_{ n } }{ n }  \right) =\dfrac { f'\left( { x }_{ 1 } \right)  }{ n } $$
    $$[$$Since all $${ x }_{ i }'s$$ are independent to each other, $$\displaystyle \therefore \dfrac { d{ x }_{ i } }{ { dx }_{ j } } =0$$ if $$i\neq j$$ and $$\displaystyle \dfrac { { dx }_{ i } }{ { dx }_{ j } } =1$$ if $$(i=j)]$$
    On putting $${ x }_{ 1 }={ x }_{ 2 }=...={ x }_{ n-1 }=0$$ and $${ x }_{ n }=x,$$ we get  $$\displaystyle f'\left( \dfrac { x }{ n }  \right) =f'\left( 0 \right) =a.$$
    On integrating, we get $$\displaystyle nf'\left( \dfrac { x }{ n }  \right) =ax+c$$
    Since $$f(0)=b,$$ we have $$c=nb$$
    $$\displaystyle \therefore nf'\left( \dfrac { x }{ n }  \right) =ax+nb\Rightarrow nf'\left( x \right) =nax+nb\Rightarrow f\left( x \right) =ax+b.$$
    $$\displaystyle \therefore f'\left( x \right) =a,\forall x\in R$$
  • Question 8
    1 / -0
    Suppose the function $$f(x)-f(2x)$$ has the derivative $$5$$ at $$x=1$$ and derivative $$7$$ at $$x=2$$.The derivative  of the function $$f(x)-f(4x)$$ at $$x=1$$, has the value equal to 
    Solution
    The derivative will be,$$f'(x)-2f'(2x)$$
    $$f'(x)-2f'(2x)|_{1}=5=f'(1)-2f'(2)...........(1)$$
    $$f'(x)-2f'(2x)|_{2}=7=f'(2)-2f'(4)$$
    Hence, $$ 14=2f'(2)-4f'(4)$$ ........................(2)
    Adding (1) and (2),
    $$19=2f'(2)-4f'(4)+f'(1)-2f'(2)$$
    $$\Rightarrow f'(1)-4f'(4)=19$$
  • Question 9
    1 / -0
    $$y=\sqrt{\sin x+\sqrt{\sin x +\sqrt{\sin x+-\infty }}}$$ then $$\displaystyle \frac{dy}{dx}$$ equals:$$(\sin x> 0)$$
    Solution
    $$y=\sqrt{\sin x\sqrt{\sin x \sqrt{\sin x+-\infty }}}$$
    Taking square on both the sides, we get
    $${ y }^{ 2 }=\sin { x } +\sqrt { \sin  x\sqrt { \sin  x\sqrt { \sin  x+-\infty  }  }  } $$
    $${ y }^{ 2 }=\sin { x } +y$$ ............ Since $$y=\sqrt{\sin x\sqrt{\sin x \sqrt{\sin x+-\infty }}}$$
    $$2y\displaystyle \frac { dy }{ dx } =\cos { x } +\displaystyle \frac { dy }{ dx } $$
    $$\displaystyle \frac { dy }{ dx } =\displaystyle \frac { \cos { x }  }{ 2y-1 } $$
  • Question 10
    1 / -0
    If P(x) is a polynomial such that $$P\left ( x^{2}+1 \right )=\left \{ P\left ( x^{2} \right ) \right \}^{2}+1$$ and $$P(0)=0$$ then $$P^{'}(0)$$ is equal to
    Solution
    Given,  $$P\left ( x^{2}+1 \right )=\left \{ P\left ( x^{2} \right ) \right \}^{2}+1$$   ...(1)
    Given $$P(0)=0$$
    Put $$x=0$$ in (1)
    $$\Rightarrow P(1)={P(0)}^{2}+1$$
    $$\Rightarrow P(1)=1$$
    Also, put $$x=1$$ in (1)
    $$\Rightarrow P(2)=2$$
    Also, since, P(x) is a polynomial so we have P(x)=x
    $$\Rightarrow P'(x)=1$$
    $$P'(0)=1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now