Label the table entry in the i th row and j th column by $$a_{ ij }$$where the bottom-left corner is in the first row and first column. Let $$\displaystyle b_{ij}= 10(i-1)+j$$ be the number originally in the i th row and j th column. Observe that $$\displaystyle P= \sum_{i,j=1}^{10}a_{ij}b_{ij}$$ is invariant. Indeed, every time entries $$\displaystyle a_{mn}, a_{pq}, a_{rs}$$ are changed (with m+r= 2p and n+s= 2q), P increases or decreases by $$\displaystyle b_{mn}-2b_{pq}+b_{rs},$$ But this equals $$\displaystyle 10\left ( \left ( m-1 \right )+ \left ( r-1 \right )-2\left ( p-1 \right )+\left ( n+s-2q \right )\right )= 0.$$ In the beginning $$\displaystyle P= \sum_{i,j=1}^{10}a_{ij}b_{ij}$$ at the end, the entires $$a_{ij}$$ equal the $$b_{ij}$$ In some order,we now have $$\displaystyle P= \sum_{i,j=1}^{10}a_{ij}b_{ij}$$ By the rearrangement inequality, this is at least $$\displaystyle P= \sum_{i,j=1}^{10}a_{ij}b_{ij}$$ with equality only when each $$a_{ij}=b_{ij}$$ The equality does occur since P is invariant. Therefore the $$a_{ij}$$ do indeed equal the $$b_{ij}$$in the same order, and thus the entries $$1, 2, ... , 100$$ appear in their original order.