Self Studies

Differentiation Test 18

Result Self Studies

Differentiation Test 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If   $$\displaystyle y^{x}=x^{\sin y} $$, find $$\cfrac{dy}{dx}$$.
    Solution
    Given $$\displaystyle y^{x}\:=x^{\sin \:y}$$. 

    Take log both sides.

    $$\displaystyle x \log y = \sin y \: \log \:x.$$ 

    Differentiate w.r.t. x 

    $$\displaystyle \log y+x.\frac{1}{y} \frac{dy}{dx} = \frac{1}{x} \sin y+ (\log x)\cos y .\frac{dy}{dx}$$

    $$\displaystyle \left ( \log y - \frac{\sin y}{x} \right )=\frac{dy}{dx}\left [ \cos y \log x-\frac{x}{y} \right ]$$

    $$\displaystyle \therefore \frac{dy}{dx}=\frac{y}{x}\left [ \frac{x \log y-\sin y}{y \log x \cos y-x}\right ]$$
  • Question 2
    1 / -0
    The numbers 1, 2, ..., 100 are arranged in the squares of an table in the following way: the numbers 1, ... , 10 are in the bottom row in increasing order,  numbers 11, ... ,20 are in the next row in increasing order, and so on. One can choose any number and two of its neighbors in two opposite directions (horizontal, vertical, or diagonal). Then either the number is increased by 2 and its neighbors are decreased by 1, or the number is decreased by 2 and its neighbors are increased by 1. After several such operations the table again contains all the numbers 1, 2, ... , 100. Prove that they are in the original order.
    Solution
    Label the table entry in the i th row and j th column by $$a_{ ij }$$
    where the bottom-left corner is in the first row and first column.
    Let  
    $$\displaystyle b_{ij}= 10(i-1)+j$$ be the number originally in the i th row and j th column. Observe that $$\displaystyle P= \sum_{i,j=1}^{10}a_{ij}b_{ij}$$ 
    is invariant. Indeed, every time entries  
    $$\displaystyle a_{mn}, a_{pq}, a_{rs}$$ are changed (with m+r= 2p and n+s= 2q), P increases or decreases by $$\displaystyle b_{mn}-2b_{pq}+b_{rs},$$ 
    But this equals $$\displaystyle 10\left ( \left ( m-1 \right )+ \left ( r-1 \right )-2\left ( p-1 \right )+\left ( n+s-2q \right )\right )= 0.$$ 
    In the beginning $$\displaystyle P= \sum_{i,j=1}^{10}a_{ij}b_{ij}$$ at the end, the entires $$a_{ij}$$ equal the $$b_{ij}$$ 
    In some order,we now have $$\displaystyle P= \sum_{i,j=1}^{10}a_{ij}b_{ij}$$
    By the rearrangement inequality, this is at least  $$\displaystyle P= \sum_{i,j=1}^{10}a_{ij}b_{ij}$$
    with equality only when each  $$a_{ij}=b_{ij}$$
    The equality does occur since P is invariant. Therefore the $$a_{ij}$$ do indeed equal the $$b_{ij}$$
    in the same order, and thus the entries $$1, 2, ... , 100$$ appear in their original order.
  • Question 3
    1 / -0
    $$\displaystyle y=(\cot x)^{\sin x}+(\tan  x)^{\cos x}$$.Find dy/dx 
    Solution
    Given $$\displaystyle y=(\cot x)^{\sin x}+(\tan  x)^{\cos x}$$

    Let $$u=(\cot x)^{\sin x}$$

    Taking log on both sides

    $$\log u=\sin x \log(\cot x)$$

    Differentiating w.r.t. x, we get,

    $$\dfrac{1}{u}\dfrac{du}{dx}=\dfrac{\sin x}{\cot x}(-cosec^2 x)+\cos x \log \cot x$$

    $$\Rightarrow \dfrac{du}{dx}=\sin x(\cot x)^{\sin x -1}(-cosec^2 x)+(\cot x)^{\sin x} \cos x \log \cot x$$

    Now, $$v=(\tan  x)^{\cos x}$$

    Taking log on both sides

    $$\log v=\cos x \log(\tan x)$$

    Differentiating w.r.t. x, we get,

    $$\dfrac{1}{v}\dfrac{dv}{dx}=\dfrac{\cos x}{\tan x}(\sec^2 x)-\sin x \log \tan x$$

    $$\Rightarrow \dfrac{dv}{dx}=\cos x(\tan x)^{\cos x -1}(\sec^2 x)+(\tan  x)^{\cos x}(-\sin x) \log \tan x$$

    Since, $$y=u+v$$

    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx}$$

    $$\Rightarrow \dfrac{dy}{dx}=\sin x(\cot x)^{\sin x -1}(-cosec^2 x)+(\cot x)^{\sin x} \cos x \log \cot x+$$
                    $$ \cos x(\tan x)^{\cos x -1}(\sec^2 x)+(\tan  x)^{\cos x}(-\sin x) \log \tan x$$
  • Question 4
    1 / -0
    $$\displaystyle \frac{d}{dx}(\log_{e}\left ( \frac{1+x}{1-x} \right )^{1/4}-\frac{1}{2}\tan^{-1}x.)$$
    Solution
    Let $$\displaystyle y=\frac{1}{4}\left [ \log\left ( 1+x \right )-\log\left ( 1-x \right ) \right ]-\frac{1}{2}\tan^{-1}x.$$
    $$\Rightarrow \displaystyle

    \frac{dy}{dx}=\frac{1}{4}\left [ \frac{1}{1+x}-\frac{1}{1-x}\left ( -1

    \right ) \right ]-\frac{1}{2}.\frac{1}{1+x^{2}}$$
    $$\displaystyle =\frac{1}{2\left ( 1-x^{2} \right )}-\frac{1}{2\left ( 1+x^{2} \right )}=\frac{x^{2}}{1-x^{4}}.$$
  • Question 5
    1 / -0
    $$\displaystyle \frac{d}{dx}\tan ^{-1}\left(\frac{a \cos x-b\sin x}{b\cos x+a\sin x}\right)$$
    Solution
    Put  $$\displaystyle a= r\cos \alpha , b= r\sin \alpha $$

    $$\displaystyle \therefore r= \sqrt{a^{2}+b^{2}},\tan \alpha = \dfrac{b}{a}$$

    $$\displaystyle \therefore y= \tan ^{-1}\frac{r\cos\left ( x+\alpha  \right )}{r\sin\left ( x+\alpha  \right )}=\tan^{-1}\cot \left ( x+\alpha  \right )$$

    $$\displaystyle =\tan^{-1}\tan\left [ \dfrac{\pi}{2} -\left ( x+\alpha  \right )\right ]$$

    $$\displaystyle \therefore y=\dfrac{\pi} {2}-x-\alpha $$

    $$\therefore \dfrac{dy}{dx}=-1$$
  • Question 6
    1 / -0
    $$\displaystyle \frac{d}{dx}(\tan ^{-1}\frac{\sin x+\cos x}{\cos x-\sin x})$$
    Solution
    Let  $$\displaystyle y = \tan ^{-1}\frac{\cos x+\sin x}{\cos x-\sin x}=\tan ^{-1}\frac{1+\tan x}{1-\tan x}$$

    $$\displaystyle \Rightarrow y =\tan ^{-1}\frac{\tan\frac{\pi}{4}+\tan x}{1-\tan\frac{\pi}{4}\tan x}=\tan^{-1}\tan(\frac{\pi}{4}+x)=\frac{\pi}{4}+x$$

    $$\therefore \cfrac{dy}{dx}=1$$
  • Question 7
    1 / -0
    If  $$5f(x)+3f\left ( \displaystyle \frac{1}{x} \right )=x+2$$ and $$y=xf(x)$$ then $$\left (\displaystyle  \frac{dy}{dx} \right )_{x=1}$$ is equal to ?
    Solution
    $$5f(x)+3f\left ( \displaystyle \frac{1}{x} \right )=x+2\Rightarrow (1)$$
    Replace $$x$$ by $$\dfrac{1}{x}$$
    $$\Rightarrow 5f\left ( \displaystyle \frac{1}{x} \right )+3f(x)=\dfrac{1}{x}+2\Rightarrow (2)$$
    $$\Rightarrow 5\times(1)-3\times (2)\Rightarrow 16f(x) =5x-\dfrac{3}{x}+4=\dfrac{5x^2+4x-3}{x}$$
    $$\therefore y = xf(x) =\dfrac{5x^2+4x-3}{16}$$
    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{10x+4}{16}$$
    $$\therefore \left(\dfrac{dy}{dx}\right)_{x=1}=\dfrac{10+4}{16}=\dfrac{7}{8}$$
  • Question 8
    1 / -0
    If $$\displaystyle  f\left( x \right) =\sqrt { 1+\sqrt { x }  } , x > 0,$$ then $$\displaystyle f\left ( x \right )\cdot f'\left ( x \right )$$ is equal to
    Solution
    Let $$y=f\left( x \right) =\sqrt { 1+\sqrt { x }  } $$

    Then, $${ y }^{ 2 }=1+\sqrt { x } $$

    Differentiating w.r.t. x, we get,

    $$\displaystyle 2y\frac{dy}{dx}=\frac{1}{2\sqrt{x}}$$

    $$\Rightarrow f(x)f'(x)=\displaystyle \frac{1}{4\sqrt{x}}$$
  • Question 9
    1 / -0
    Rajdhani Express going from Bombay to Delhi stops at five inter-mediate stations, $$10$$ passengers enter the train during the journey with $$10$$ different ticket of two classes. The number of different sets of tickets they may have is
    Solution
    For a particular class, the total number of different tickets from first intermediate station is $$5.$$ 
    Similarly, number of different tickets from second intermediate station is $$4.$$ 
    So the total number of different tickets is $$5+4+3+2+1=15$$.
    And same number of tickets for another class is equal to total number of different tickets, 
    which is equal to $$30$$ and number of selection is $$^{30}C_{10}$$.
  • Question 10
    1 / -0
    $$\displaystyle \dfrac{d}{dx}\tan ^{-1}\left(\dfrac{\cos x}{1+\sin x}\right)$$
    Solution
    Let  $$\displaystyle y = \tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)$$

    $$\Rightarrow \displaystyle y = \tan ^{-1}\left(\dfrac{(\cos^2 \dfrac{x}{2}-\sin^2\dfrac{x}{2})}{\sin^2\dfrac{x}{2}+\cos^2\dfrac{x}{2}+2\sin \dfrac{x}{2}.\cos\dfrac{x}{2}}\right)$$

    $$\displaystyle y=\tan ^{-1}\left(\dfrac{\cos\left ( x/2 \right )-\sin \left ( x/2 \right )}{\cos \left ( x/2 \right )+\sin \left ( x/2 \right )}\right)$$

    $$\displaystyle =\tan^{-1}\left(\frac{1-\tan\left ( x/2 \right )}{1+\tan \left ( x/2 \right )}\right)$$

    $$\displaystyle =\tan^{-1}\left(\tan \left ( \pi /4-x/2 \right )\right)=\pi/4-x/2$$

    $$\displaystyle \therefore \dfrac{dy}{dx}=-\dfrac{1}{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now