Self Studies

Differentiation Test 20

Result Self Studies

Differentiation Test 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$ \displaystyle {f}'\left ( x \right )=g\left ( x \right ) $$ and $$ \displaystyle {g}'\left ( x \right )=-f\left ( x \right ) $$ and $$ \displaystyle f\left ( 2 \right )=4={f}'\left ( 2 \right ) $$ then $$ \displaystyle f^{2}\left ( 16 \right )+g^{2}\left ( 16 \right ) $$ is
    Solution
    $$\displaystyle \frac { d }{ dx } \left( { f }^{ 2 }\left( x \right) +{ g }^{ 2 }\left( x \right)  \right) \\ =2\left[ f\left( x \right) f'\left( x \right) +g\left( x \right) g'\left( x \right)  \right] \\ =2\left[ f\left( x \right) -g\left( x \right) f\left( x \right)  \right] =0$$
    Thus $${ f }^{ 2 }\left( x \right) +{ g }^{ 2 }\left( x \right) $$ is constant.
    Therefore $${ f }^{ 2 }\left( 16 \right) +{ g }^{ 2 }\left( 16 \right) ={ f }^{ 2 }\left( 2 \right) +{ g }^{ 2 }\left( 2 \right) \\ ={ f }^{ 2 }\left( 2 \right) +{ \left( f'\left( 2 \right)  \right)  }^{ 2 }=16+16=32$$
  • Question 2
    1 / -0
    If $$ \displaystyle y=\sec ^{ -1 }{ \left( \frac { x+1 }{ x-1 }  \right)  } +\sin ^{ -1 }{ \left( \frac { x-1 }{ x+1 }  \right)  }  $$ then $$ \displaystyle \frac{dy}{dx} $$ is equal to
    Solution
    $$\displaystyle y=\sec ^{ -1 }{ \left( \frac { x+1 }{ x-1 }  \right)  } +\sin ^{ -1 }{ \left( \frac { x-1 }{ x+1 }  \right)  } $$
    $$\displaystyle =\cos ^{ -1 }{ \left( \frac { x-1 }{ x+1 }  \right)  } +\sin ^{ -1 }{ \left( \frac { x-1 }{ x+1 }  \right)  } =\frac { \pi  }{ 2 } $$
    However the above function is defined only for values of x, given by
    $$\displaystyle -1\le \frac { x-1 }{ x+1 } \le 1$$
    i.e. $$\displaystyle \frac { x-1 }{ x+1 } +1\ge 0$$ and $$\displaystyle \frac { x-1 }{ x+1 } -1\le 0$$
    i.e. $$\displaystyle \frac { 2x }{ x+1 } \ge 0$$ and $$\displaystyle \frac { 2 }{ x+1 } \ge 0$$
    i.e $$x<-1$$ or $$\ge 0$$ and $$x>-1$$
    i.e $$x\ge 0$$
    Hence we have
    $$\displaystyle y=\frac { \pi  }{ 2 } ,\quad x\ge 0\Rightarrow \frac { dy }{ dx } =0,\quad x>0$$
  • Question 3
    1 / -0
    Let $$f\left( x \right)=\sqrt { x-1 } +\sqrt { x+24-10\sqrt { x-1 }  } ;1<x<26$$ be a real valued function. Then $$f'(x)$$ for $$1<x<26$$ is
    Solution
    Let,  $$ f(x) = \sqrt{x -1} + \sqrt{x + 24 -10\sqrt{x-1}}$$
    $$ 1< x< 26$$   be  a  real  valued   function ,
    We   have,  
    $$ f(x) = \sqrt{x -1} + \sqrt{x + 24 -10\sqrt{x-1}}$$
    This  can  be  written  as
    $$ f(x) = \sqrt{x -1} + \sqrt{\left ( 5 -  \sqrt{x-1}  \right )^{2} }$$
    $$ \because  1< x< 26$$
    $$ f(x) = \sqrt{x-1} + 5 - \sqrt{x-1} $$
    $$ f(x) =  5 $$
    On   differentiating   wrt   x ,  we  get
    $$ f{}'(x) = 0 $$
    Hence ,Option  A
  • Question 4
    1 / -0
    Find the area of the triangle whose vertices are $$(3,2), \ (-2, -3)$$ and $$(2,3)$$.
    Solution
    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 });$$ $$({ x }_{ 2 },y_2)$$ and $$({ x }_{ 3 },{ y }_{ 3 })$$
    $$ = \left |\dfrac{ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3 (y_1 - y_2) } {2} \right |$$

    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (3,2) $$ ; $$({ x }_{ 2 },{ y }_{ 2 }) = (-2,-3) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (2,3)$$ 
    in the area formula, we get

    Area = $$\left | \dfrac {3(-3-3) +(-2)(3-2) + 2 (2-(-3)) }{2}\right | = 5 $$ sq. unit
  • Question 5
    1 / -0
    If for a non-zero $$x,$$ the function $$f(x)$$ satisfies the equation $$\displaystyle af\left( x \right)+bf\left( \frac { 1 }{ x }  \right) =\frac { 1 }{ x } -5\left( a\neq b \right) $$ then $$f'(x)$$ is equal to
    Solution
    We have, $$\displaystyle af\left( x \right)+bf\left( \frac { 1 }{ x }  \right) =\frac { 1 }{ x } -5$$
    Substituting $$\displaystyle\frac{1}{x}$$ in place of $$x,$$ we have
    $$\displaystyle af\left( \frac { 1 }{ x }  \right) +bf\left( x \right)=x-5$$   ...(2)
    Eliminating $$\displaystyle f\left( \frac { 1 }{ x }  \right) $$ from equation (1) and (2), we have
    $$\displaystyle \left( { a }^{ 2 }-{ b }^{ 2 } \right) f\left( x \right) =a\left( \frac { 1 }{ x } -5 \right) -b\left( x-5 \right) $$
    $$\displaystyle \Rightarrow f\left( x \right) =\frac { 1 }{ { a }^{ 2 }-{ b }^{ 2 } } \left[ \frac { a }{ x } -bx+5\left( b-a \right)  \right] $$
    $$\displaystyle \therefore f'\left( x \right) =\frac { 1 }{ { b }^{ 2 }-{ a }^{ 2 } } \left[ \frac { a }{ { x }^{ 2 } } +b \right] $$
  • Question 6
    1 / -0
    If $${ S }_{ n }$$ denotes the sum of $$n$$ terms of $$g.p$$. whose common ratio is $$r$$, then $$\displaystyle \left( r-1 \right) \frac { d{ S }_{ n } }{ dr } $$ is equal to
    Solution
    We have, $$\displaystyle {S}_{n}=\frac { a\left( { r }^{ n }+1 \right)  }{ r-1 } $$
    $$\Rightarrow \left( r-1 \right) { S }_{ n }={ ar }^{ n }-a$$
    Differentiating both sides with respect to $$r,$$ we get 
    $$\displaystyle \left( r-1 \right) \frac { { dS }_{ n } }{ dr } +{ S }_{ n }=na{ r }^{ n-1 }-0$$
    $$\displaystyle \Rightarrow \left( r-1 \right) \frac { { dS }_{ n } }{ dr } =na{ r }^{ n-1 }-{ S }_{ n }$$
    $$=n[n$$th term from of $$G.P.]$$ $$-{S}_{n}$$
    $$=n\left( { S }_{ n }-{ S }_{ n-1 } \right) -{ S }_{ n }$$
    $$=\left( n-1 \right) { S }_{ n }-n{ S }_{ n-1 }.$$
  • Question 7
    1 / -0
    Find the area of the triangle formed by joining the midpoints of the sides of the triangle whose vertices are $$(2,2)$$, $$(4,4)$$ and $$(2,6)$$.
    Solution
    Let $$ A(2,2), B(4,4) $$ and $$ C(2,6) $$ be the vertices of a given triangle ABC.

    Let D, E, and F be the midpoints of AB, BC and CA respectively.

    Mid point of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y }_{

    2 }) $$ is  calculated by the formula $$ \left( \dfrac { { x }_{ 1 }+{ x

    }_{ 2 } }{ 2 } ,\dfrac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$

    Using this formula,
    the coordinates of D, E, and F are given as $$\displaystyle  D \left (\frac{2+4}{2},\frac {2+4}{2} \right ), E\left (\frac {4+2}{2},\frac {4+6}{2}\right ) $$ and $$ F\left (\dfrac {2+2}{2},\dfrac {2+6}{2} \right ) $$

    i.e., $$ D(3,3), E(3,5) and F(2,4)  $$

    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y

    }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \dfrac { {

    x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{

    3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (3,3) $$ ; $$({ x

    }_{ 2 },{ y }_{ 2 }) = (3,5) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (2,4)$$

    in the area formula, we get

    Area of triangle DEF  $$ = \left| \dfrac { 3(5-4)+(3)(4-3)+2(3-5) }{ 2

    }  \right|  = \left| \dfrac { 3 +3 -4 }{ 2 }  \right|  =

    \dfrac {2}{2}  = 1 \ sq \ units $$
  • Question 8
    1 / -0
    Find $$ \displaystyle  \frac{dy}{dx}$$ if $$ y=x^{x} $$
    Solution
    $$y = x^x$$
    Take log both sides,
    $$\log y = x\log x$$
    Now differentiate both side w.r.t $$x$$
    $$\Rightarrow \cfrac{1}{y}\cfrac{dy}{dx} = 1+\log x$$
    $$\Rightarrow \cfrac{dy}{dx} =x^x(1+\log x)$$
  • Question 9
    1 / -0

    $$ \displaystyle f^{ ' }\left( x \right) =g\left( x \right) $$ and $$ \displaystyle g^{ ' }\left( x \right) =-f\left( x \right)$$ for all real x and $$ \displaystyle f\left( 5 \right) =2=f^{ ' }\left( 5 \right) $$ then $$ \displaystyle f^{ 2 }\left( 10 \right) +g^{ 2 }\left( 10 \right) $$ is -

    Solution

    Given, $$ \displaystyle f^{ ' }\left( x \right) =g\left( x \right)$$ and $$g^{ ' }\left( x \right) =-f\left( x \right)$$

    Now $$ \displaystyle \frac { d }{ dx } \left[ f^{ 2 }\left( x \right) +g^{ 2 }\left( x \right)  \right] =2f\left( x \right) f^{ ' }\left( x \right) +2g\left( x \right) g^{ ' }\left( x \right) $$

    $$ \displaystyle =2f\left( x \right) g\left( x \right) -2g\left( x \right) f\left( x \right) =0$$

    $$ \displaystyle \therefore \quad f^{ 2 }\left( x \right) +g^{ 2 }\left( x \right)$$ =constant

    $$ \displaystyle f^{ 2 }\left( 5 \right) +g^{ 2 }\left( 5 \right) = 4 + 4 = 8$$

    $$ \displaystyle \therefore \quad f^{ 2 }\left( 10 \right) +g^{ 2 }\left( 10 \right) $$ = 8

  • Question 10
    1 / -0
    If $$y = \displaystyle \tan^{-1}\left (\cot x \right ) +\cot^{-1}(\tan x),$$ then $$\displaystyle \frac{dy}{dx}$$ is equal to-
    Solution
    $$\dfrac{d}{dx}\left(\tan^{-1} \left(\cot \left(x\right)\right)+\cot^{-1} \left(\tan \left(x\right)\right)\right)$$
    $$=\dfrac{d}{dx}\left(\tan^{-1} \left(\cot \left(x\right)\right)\right)+\dfrac{d}{dx}\left(\cot^{-1} \left(\tan \left(x\right)\right)\right)$$
    $$=-\dfrac{\csc ^2\left(x\right)}{\cot ^2\left(x\right)+1}-\dfrac{\sec ^2\left(x\right)}{\tan ^2\left(x\right)+1}$$
    $$=-\dfrac{2\csc ^2\left(x\right)\sec ^2\left(x\right)}{\left(\tan ^2\left(x\right)+1\right)\left(\cot ^2\left(x\right)+1\right)}=-2\dfrac{csc^2(x)sec^2{(x)}}{csc^2{(x)}sec^2{(x)}}=-2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now