Let $$ A(2,2), B(4,4) $$ and $$ C(2,6) $$ be the vertices of a given triangle ABC.
Let D, E, and F be the midpoints of AB, BC and CA respectively.
Mid point of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y }_{ 2 }) $$ is calculated by the formula $$ \left( \dfrac { { x }_{ 1 }+{ x }_{ 2 } }{ 2 } ,\dfrac { { y }_{ 1 }+y_{ 2 } }{ 2 } \right) $$ Using this formula, the coordinates of D, E, and F are given as $$\displaystyle D \left (\frac{2+4}{2},\frac {2+4}{2} \right ), E\left (\frac {4+2}{2},\frac {4+6}{2}\right ) $$ and $$ F\left (\dfrac {2+2}{2},\dfrac {2+6}{2} \right ) $$
i.e., $$ D(3,3), E(3,5) and F(2,4) $$
Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y }_{ 2 })$$ and $$({ x }_{ 3 },{ y }_{ 3 })$$ is $$ \left| \dfrac { { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 } \right| $$ Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (3,3) $$ ; $$({ x }_{ 2 },{ y }_{ 2 }) = (3,5) $$ and $$({ x }_{ 3 },{ y }_{ 3 }) = (2,4)$$ in the area formula, we get Area of triangle DEF $$ = \left| \dfrac { 3(5-4)+(3)(4-3)+2(3-5) }{ 2 } \right| = \left| \dfrac { 3 +3 -4 }{ 2 } \right| = \dfrac {2}{2} = 1 \ sq \ units $$