$$r=\sqrt { 2\phi +{ cos }^{ 2 }\left( 2\phi +\dfrac { \pi }{ 4 } \right) } $$
$$\phi =\dfrac { \pi }{ 4 } $$
$$\Rightarrow r=\sqrt { 2\times \dfrac { \pi }{ 4 } +{ cos }^{ 2 }\left( 2\times \dfrac { \pi }{ 4 } +\dfrac { \pi }{ 4 } \right) } $$
$$=\sqrt { \dfrac { \pi }{ 2 } +{ cos }^{ 2 }\left( \dfrac { 3\pi }{ 4 } \right) } $$
$$r\left( \dfrac { \pi }{ 4 } \right) =\sqrt { \dfrac { \pi }{ 2 } +\dfrac { 1 }{ 2 } } =\dfrac { \sqrt { \pi +1 } }{ \sqrt { 2 } } $$
$${ r }^{ 2 }=2\phi +{ cos }^{ 2 }\left( 2\phi +\dfrac { \pi }{ 4 } \right) $$
Differentiate w.r.t $$\phi $$
$$\Rightarrow 2r\dfrac { dr }{ d\phi } =2+2\cos { \left( 2\phi +\dfrac { \pi }{ 4 } \right) } \left( -\sin { \left( 2\phi +\dfrac { \pi }{ 4 } \right) } \right) \left( +2 \right) $$
$$2r\left( \dfrac { \pi }{ 4 } \right) \dfrac { dr }{ d\phi } =2+2\cos { \dfrac { 3\pi }{ 4 } \left( -\sin { \left( \dfrac { 3\pi }{ 4 } \right) } \right) } \left( +2 \right) $$
$$=2+2\times \dfrac { -1 }{ \sqrt { 2 } } \times \dfrac { -1 }{ \sqrt { 2 } } \times \left( +2 \right) $$
$$2\times \left( \sqrt { \dfrac { \pi +1 }{ 2 } } \right) \times \dfrac { dr }{ d\phi } =4$$
$$\dfrac { dr }{ d\phi } =\dfrac { 2\sqrt { 2 } }{ \sqrt { \pi +1 } } $$