Self Studies

Differentiation Test 27

Result Self Studies

Differentiation Test 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$(9, 2), (5, -1) $$ and $$ (7, -5)$$ are the vertices of the triangle. Find its area.
    Solution
    Area of triangle with vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is:
    Formula for area of triangle is $$\left|\dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2} (y_{3} - y_{1}) + x_{3} (y_{1} - y_{2})] \right|$$
    where $$x_{1} = 9$$, $$y_{1} = 2$$, $$x_{2} = 5$$, $$y_{2} = -1$$, $$x_{3} = 7$$ and $$y_{3} = -5$$
    Substitute the values, we get,
    Area of triangle $$=$$ $$\left|\dfrac{1}{2}\times[9(-1 + 5) + 5(-5 - 2) + 7(2 + 1)]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times[36 - 35 + 21]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times 22\right|$$
    $$=$$ $$\left|11 \right|$$
    Area always in absolute value.
    So, area of the triangle $$= 11$$ square units.
  • Question 2
    1 / -0
    What is the area of the triangle whose vertices are: $$(-3, 15), (6, -7) $$ and $$(10, 5)$$?
    Solution
    Area of triangle with vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$  is $$A=\left|\dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2} (y_{3} - y_{1}) + x_{3} (y_{1} - y_{2})] \right|$$
    Here $$x_{1} = -3$$, $$y_{1} = 15$$, $$x_{2} = 6$$, $$y_{2} = -7$$, $$x_{3} = 10$$ and $$y_{3} = 5$$

    Substituting the values, we get,
    Area of triangle $$=$$ $$\left|\dfrac{1}{2}\times[-3(-7 - 5) + 6(5 - 15) + 10(15 + 7)]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times[36 - 60 + 220]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times 196\right|$$
    $$=$$ $$\left|98 \right|$$

    Area is always in absolute value.
    So, area of the triangle $$= 98$$ square units.
  • Question 3
    1 / -0
    Identify the missing integer: $$9, 45,$$ ____$$, 1125, 5625...$$
    Solution
    This is continuous series multiplied by $$5$$.
    $$9 \times  5 = 45$$
    $$45 \times  5 = 225$$
    $$225 \times  5 = 1,125$$
    $$1,125 \times  5= 5,625.$$
    So, the missing integer is $$225$$.
  • Question 4
    1 / -0
    What is the area of the triangle for the following points $$(6, 2), (5, 4)$$ and $$(3, -1)$$?
    Solution
    Formula for area of triangle is $$\left|\dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2} (y_{3} - y_{1}) + x_{3} (y_{1} - y_{2})] \right|$$
    where $$x_{1} = 6$$, $$y_{1} = 2$$, $$x_{2} = 5$$, $$y_{2} = 4$$, $$x_{3} = 3$$ and $$y_{3} = -1$$
    Substitute the values, we get,
    Area of triangle $$=$$ $$\left|\dfrac{1}{2}\times[6(4 + 1) + 5(-1 - 2) + 3(2 - 4)]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times[30 - 15 - 6]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times 9\right|$$
    $$=$$ $$\left|4.5 \right|$$
    Area always in absolute value.
    So, area of the triangle $$= 4.5$$ square units.
  • Question 5
    1 / -0
    The area of the triangle whose vertices are $$(0, 1), (1, 4)$$ and $$(1, 2)$$ is ___ square units.
    Solution
    Formula for area of triangle is $$\left|\dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2} (y_{3} - y_{1}) + x_{3} (y_{1} - y_{2})] \right|$$
    where $$x_{1} = 0$$, $$y_{1} = 1$$, $$x_{2} = 1$$, $$y_{2} = 4$$, $$x_{3} = 1$$ and $$y_{3} = 2$$
    Substitute the values, we get
    Area of triangle $$=$$ $$\left|\dfrac{1}{2}\times[0(4 - 2) + 1(2 - 1) + 1(1 - 4)]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times[0 + 1 - 3]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times -2\right|$$
    $$=$$ $$\left|- 1 \right|$$
    Area always in absolute value.
    So, area of the triangle is $$ 1$$ square units.
  • Question 6
    1 / -0
    If $$r=\left[2\phi +\cos^2\left(2\phi +\dfrac{\pi}4\right)\right]^{\tfrac12},$$ then what is the value of the derivative of $$\dfrac{dr}{d\phi}$$ at $$\phi=\dfrac{\pi}4?$$
    Solution
    $$r=\sqrt { 2\phi +{ cos }^{ 2 }\left( 2\phi +\dfrac { \pi  }{ 4 }  \right)  } $$
    $$\phi =\dfrac { \pi  }{ 4 } $$

    $$\Rightarrow r=\sqrt { 2\times \dfrac { \pi  }{ 4 } +{ cos }^{ 2 }\left( 2\times \dfrac { \pi  }{ 4 } +\dfrac { \pi  }{ 4 }  \right)  } $$

    $$=\sqrt { \dfrac { \pi  }{ 2 } +{ cos }^{ 2 }\left( \dfrac { 3\pi  }{ 4 }  \right)  } $$

    $$r\left( \dfrac { \pi  }{ 4 }  \right) =\sqrt { \dfrac { \pi  }{ 2 } +\dfrac { 1 }{ 2 }  } =\dfrac { \sqrt { \pi +1 }  }{ \sqrt { 2 }  } $$

    $${ r }^{ 2 }=2\phi +{ cos }^{ 2 }\left( 2\phi +\dfrac { \pi  }{ 4 }  \right) $$

    Differentiate w.r.t $$\phi $$

    $$\Rightarrow 2r\dfrac { dr }{ d\phi  } =2+2\cos { \left( 2\phi +\dfrac { \pi  }{ 4 }  \right)  } \left( -\sin { \left( 2\phi +\dfrac { \pi  }{ 4 }  \right)  }  \right) \left( +2 \right) $$

    $$2r\left( \dfrac { \pi  }{ 4 }  \right) \dfrac { dr }{ d\phi  } =2+2\cos { \dfrac { 3\pi  }{ 4 } \left( -\sin { \left( \dfrac { 3\pi  }{ 4 }  \right)  }  \right)  } \left( +2 \right) $$

    $$=2+2\times \dfrac { -1 }{ \sqrt { 2 }  } \times \dfrac { -1 }{ \sqrt { 2 }  } \times \left( +2 \right) $$

    $$2\times \left( \sqrt { \dfrac { \pi +1 }{ 2 }  }  \right) \times \dfrac { dr }{ d\phi  } =4$$

    $$\dfrac { dr }{ d\phi  } =\dfrac { 2\sqrt { 2 }  }{ \sqrt { \pi +1 }  } $$
  • Question 7
    1 / -0
    $$f(x) = \log \left (e^{x} \left (\dfrac {x - 2}{x + 2}\right )^{\dfrac {3}{4}} \right ) \Rightarrow f'(0) =$$
    Solution
    $$f(x) = \log \left (e^{x} \left (\dfrac {x - 2}{x + 2}\right )^{\dfrac {3}{4}}\right )$$

    $$f(x) = x + \dfrac {3}{4} [\log (x - 2) - \log (x + 2)]$$

    $$f'(x) = 1 + \dfrac {3}{4} \left [\dfrac {1}{x - 2} - \dfrac {1}{x + 2} \right ]$$

    $$f'(x) = \left [1 + \dfrac {3}{x^{2} - 4}\right ]$$

    $$f'(0) = 1 -\dfrac {3}{4} = \dfrac {1}{4}$$
  • Question 8
    1 / -0
    If n is an integer with $$0\le n \le 11$$ then the minimum value of $$n!(11-n)!$$ is attained when a value of n = 
    Solution
    Let $$y=n!(11-n)!$$
    Consider $$x= ^{11}C_n=\dfrac{11!}{n!(11-n)!}$$
    For maximum value of $$x$$ we must have $$n=6$$ or $$n=5$$
    Thus $$x_{max}=^{11}C_6=\dfrac{11!}{5!6!}=\dfrac{11!}{y_{min}}$$
    $$\Rightarrow y_{min}=5!6!$$ i.e. $$n=6$$ or $$n=5$$
  • Question 9
    1 / -0
    $$6, 10, 18, 34, 66$$
    The first number in the list above is $$6$$. Determine a rule for finding each successive number in the list.
    Solution
    The series is  $$6,10,18,34,66$$
    In the given series:
    $$6+6=12-2=10$$
    $$10+10=20-2=18$$
    $$18+18=36-2=34$$
    $$34+34=68-2=66$$
    Hence in this each successive number is obtained by double the preceding number and then subtract $$2$$ from the result. 
  • Question 10
    1 / -0
    If $$y = \tan^{-1} \left (\dfrac {1}{1 + x + x^{2}}\right ) + \tan^{-1} \left (\dfrac {1}{x^{2} + 3x + 2}\right ) + \tan^{-1} \left (\dfrac {1}{x^{2} + 5x + 6}\right ) + .... +$$ upto $$n$$ terms then $$\dfrac {dy}{dx}$$ at $$x = 0$$ and $$n = 1$$ is equal to
    Solution

    $$y= \tan^{-1} \left (\dfrac {1}{1 + x(x + 1)}\right ) + \tan^{-1}\left (\dfrac {1}{1 + (x + 1)(x + 2)}\right ) +\\ \quad\tan^{-1} \left (\dfrac {1}{1 + (x + 2)(x + 3)}\right ) + ..... + \tan^{-1} \left (\dfrac {1}{1 + (x + n - 1) (x + n)}\right )$$


    when $$n = 1$$

    $$y = \tan^{-1} \left (\dfrac {1}{1 + x(x + 1)}\right ) = \tan^{-1} \left (\dfrac {(x + 1) - x}{1 + x(x + 1)}\right ) = \tan^{-1} (x + 1) - \tan^{-1} x$$

    $$\Rightarrow \dfrac {dy}{dx} = \dfrac {1}{1 + (x + 1)^{2}} - \dfrac {1}{1 + x^{2}} \\ \therefore \dfrac {dy}{dx}]_{x = 0} = \dfrac {1}{1 + 1} - \dfrac {1}{1} = \dfrac {1}{2} - 1 = -\dfrac {1}{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now