Self Studies

Differentiation Test 33

Result Self Studies

Differentiation Test 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Number of arrangements of the letter $$HOLLYWOOD$$ in which all $$Os$$ are separated.
  • Question 2
    1 / -0
    If $$\dfrac { ^{ n }{ P }_{ r-1 } }{ a } =\dfrac { ^{ n }{ P }_{ r } }{ b } =\dfrac { ^{ n }{ P }_{ r+1 } }{ c } $$, then which of the following holds good:
    Solution
    $$\dfrac{^{n} {P}_{r-1}}{a} = \dfrac{^{n}{P}_{r}}{b} = \dfrac{^{n}{P}_{r+1}}{c} $$ 

    $$\implies \dfrac{n!}{(n - r+ 1)!a} = \dfrac{n!}{(n-r)!b} = \dfrac{n!}{(n-r-1)!c} $$

    $$\implies \dfrac{n!}{(n - r+ 1)!a} = \dfrac{n!}{(n-r)(n-r+1)!b} = \dfrac{n!}{(n-r-1)(n-r)(n-r+1)!c} $$

    $$\implies \dfrac{1}{a} = \dfrac{1}{(n-r)b} = \dfrac{1}{(n-r-1)(n-r)c} $$

    $$\implies n-r = \dfrac{a}{b}$$  and $$n-r-1 = \dfrac{b}{c}$$

    $$\implies n-r - 1 = \dfrac{a}{b} - 1 $$

    $$\implies \dfrac{b}{c} = \dfrac{a}{b} - 1$$

    $$\implies \dfrac{b}{c} - \dfrac{a}{b} = - 1$$

    $$\implies b^2 - ac = - bc $$

    $$\implies b^2 = ac - bc$$

    $$\therefore b^2 = c(a - b)$$ (Ans)


  • Question 3
    1 / -0
    The number of permutations of the letters of the word $$HONOLULU$$ taken $$4$$ at a time is
    Solution
    $$H-1$$
    $$N-1$$
    $$O-2$$
    $$L-2$$
    $$U-2$$
    Number of permutation $$=\dfrac {n!}{r_1\times r_2\times....\times r_n} =\dfrac { 8! }{ { (2! })^{ 3 }4! } =210$$
  • Question 4
    1 / -0
    Function f(x)=$$\left| {x - 2} \right| - 2\left| {x - 4} \right|\,is$$ discontinous at:
    Solution
    $$f(x)=\mid x-2 \mid -2\mid x-4 \mid$$
    $$\therefore f\left(x \right)=\begin{Bmatrix} -(x-2)+2(x-4),\qquad x<2\\ (x-2)+2(x-4), \qquad 2\le x \le 4\\ (x-2)-2(x-4) \qquad x\gt 4 \\ \end{Bmatrix}$$
    At $$x=2$$
    L.H.L(Left Hand Limit)
    $$\displaystyle\lim_{x\to\ 2^{-}}=-(2-2)+2(2-4) = -4$$
    R.H.LRight Hand Limit/0
    $$\displaystyle\lim_{x\to\ 2^{+}}=(2-2)+2(2-4)=-4$$
    $$\therefore \displaystyle\lim_{x\to\ 2^{-}}f(x) = \displaystyle\lim_{x\to\ 2^{+}}f(x)$$
    At $$x=4$$
    L.H.L(Left Hand Limit)
    $$\displaystyle\lim_{x\to\ 4^{-}}=(4-2)+2(4-4)=2$$
    R.H.L(Right Hand Limit)
    $$\displaystyle\lim_{x\to\ 4^{+}}=(4-2)-2(4-4)=2$$
    $$\therefore \displaystyle\lim_{x\to\ 4^{-}}f(x) = \displaystyle\lim_{x\to\ 4^{+}}f(x)$$
    $$\therefore \ f(x)$$ is continuous at everywhere.
  • Question 5
    1 / -0
    Differentiate with respect to $$x$$.
    $${x^{\cos x}} + \sin {x^{\tan x}}$$
    Solution
    let $$y=x^{\cos x} +\sin x ^{\tan x}$$
    let $$h=x^{\cos x}$$       $$\dfrac{d}{dx}(f(x)g(x))=f'(x)g(x)+f'(x)f(x)$$
    applying $$log$$ on both sides we get
    $$\log h=\cos x\log x$$
    differentiate on both sides wrt $$x$$
    $$\dfrac{1}{h}\dfrac{dh}{dx}=-\sin x\log x+\dfrac{\cos x}{x}$$
    $$\therefore \dfrac{dh}{dx}=x^{\cos x}\left(\dfrac{\cos x}{x}-\sin x \log x\right)$$
    let $$t=\sin x^{\tan x}$$
    applying $$\log $$ on both sides 
    $$\dfrac{1}{t}\dfrac{dt}{dx}=\sec ^2x\log {(\sin x)}+\dfrac{\tan x}{\sin x}(\cos x)$$
    $$\therefore \dfrac{dt}{dx}=\sin x^{\tan x}\left(1+\sec ^2x \log (\sin x)\right)$$
    $$y=h+t$$
    $$\implies \dfrac{dy}{dx}=\dfrac{dh}{dx}+\dfrac{dt}{dx}$$
    $$\therefore \dfrac{dy}{dx}=x^{\cos x}\left(\dfrac{\cos x}{x}-\sin x\log x\right)+\sin x^{\tan x}\left(1+\sec ^2x\log (\sin x)\right)$$
  • Question 6
    1 / -0
    Differentiate $${x^{\tan x}} + {{\mathop{\rm tanx}\nolimits} ^x}$$ with respect to $$x$$
    Solution

  • Question 7
    1 / -0
    If $$y = {\left( {\sin \,x} \right)^x}$$, then $$\dfrac{{dy}}{{dx}} = $$
    Solution
    given $$y=(\sin x)^x$$
    applying $$\ln$$ on both sides we get
    $$\ln y=x\ln(\sin x)$$
    differentiating both sides wrt $$x$$
    $$\dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{d}{dx}\left(x\ln(\sin x)\right)$$
    $$\dfrac{1}{y}\dfrac{dy}{dx}=\ln(\sin x)+x\dfrac{1}{\sin x}\cos x$$
    $$\dfrac{dy}{dx}=y\left(\ln(\sin x)+x\cot x\right)$$
    $$\therefore \dfrac{dy}{dx}=(\sin x)^x\left(x\cot x\right) +  (\sin x)^x \ln(\sin x)$$
  • Question 8
    1 / -0
    Number of identical terms in the sequence $$2, 5, 8, 11,$$___ upto $$100$$ terms and $$3, 5, 7, 9, 11$$____ upto $$100$$ terms are
    Solution
    Fierst series: $$2, 5, 8, 11.........$$
    $$a_1 =2;\ d=3;\ n=100$$
    $$l=20(100-1)^*5=2+99^*3=2+297=299$$
    so, series $$=2, 5, 8, 11,.....,197, 197,200,203,....,299$$
    second series; $$3, 5, 9, 11,.....$$
    $$a_1=3;\ d=2;\ n=100$$
    $$l=3+(100-1)^*2=3+99^*2=3+198=201$$
    so series $$=3, 5, 7, 9, 11, ...., 201$$ 
    series having similar terms; $$5, 11, 17, ....., 197$$
    $$a_1=5;\ d=6;\ l=197$$
    $$l=a_1+(n-1)d$$
    $$197=5+(n-1)6$$
    $$192/6=n-1$$
    $$32+1=n$$
    $$n=33$$
  • Question 9
    1 / -0
    The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet ?
    Solution
    $$2$$ vowels can be chosen in $$5{c}_{2}$$ ways. 
    $$2$$ consonants can be chosen in $$21{c}_{2}$$ ways. 
    $$4$$ letter can be arranged in $$4$$ ways.
    $$\therefore$$ The no of words containing $$2$$ vowels and $$2$$ consonants $$=5{c}_{2}\times 21{c}_{2}\times 4!=10\times 210\times 24=50400$$
  • Question 10
    1 / -0
    $$67,84,95,.,133,158$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now