Self Studies

Differentiation Test 36

Result Self Studies

Differentiation Test 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A question paper on mathematics consists of twelve questions divided into three parts A, B and C, each containing four questions. In how many ways can an examinee answer five questions, selecting atleast one from each part.
    Solution
    Total no. of ways 
             $$A$$         $$B$$        $$ C$$                   $$A$$    $$B$$     $$ C$$
    $$=(^4C_1\times \ ^4C_1 \times \  ^4C_3)\times 3+ (^4C_1\, ^4C_2\, ^4C_2)\times 3$$        ($$\therefore$$ multiple by 3 as for each A,B,C different combination)
    $$=192+432$$
    $$=624$$
  • Question 2
    1 / -0
    Area of the triangle formed by $$(x_{1,}y_{1}),(x_{2},y_{2}), (3y_{2},(-2y_{1}))$$
    Solution

    We have,

    $$ A\left( {{x}_{1}},{{y}_{1}} \right)=\left( {{x}_{1}},{{y}_{1}} \right) $$

    $$ B\left( {{x}_{2}},{{y}_{2}} \right)=\left( {{x}_{2}},{{y}_{2}} \right) $$

    $$ C\left( {{x}_{3}},{{y}_{3}} \right)=\left( 3{{y}_{2}},-2{{y}_{1}} \right) $$

    We know that the area of triangle is

    $$ Area\,of\,\Delta ABC=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right] $$

    $$ =\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}+2{{y}_{1}} \right)+{{x}_{2}}\left( -2{{y}_{1}}-{{y}_{1}} \right)+3{{y}_{2}}\left( {{y}_{1}}-{{y}_{2}} \right) \right] $$

    $$ =\dfrac{1}{2}\left[ {{x}_{1}}{{y}_{2}}+2{{x}_{1}}{{y}_{1}}-3{{x}_{2}}{{y}_{1}}+3{{y}_{2}}{{y}_{1}}-3{{y}_{2}}^{2} \right] $$

    Hence, the is the answer

  • Question 3
    1 / -0
    If $$f(x)=1-x+x^2-x^3+....-x^{15}+x^{16}+x^{17}$$, then the coefficient of $$x^2$$ in $$f(x-1)$$ is?
    Solution
    $$f\left( x \right) = 1 - \left( {x - 1} \right) + {\left( {x - 1} \right)^2} - {\left( {x - 1} \right)^3} + {\left( {x - 1} \right)^4}.... - {\left( {x - 1} \right)^{15}} + {\left( {x - 1} \right)^{16}} + {\left( {x - 1} \right)^{17}}$$
    The coefficient of $${x^2}$$ by using binomial expansion
    $$^2{c_0}{x^2}{ + ^3}{c_1}{x^2}{ + ^4}{c_2}{x^2}{ + ^5}{c_3}{x^2}{ + ^6}{c_4}{x^2}{ + ^7}{c_5}{x^2}{ + ^8}{c_6}{x^2}{ + ^9}{c_7}{x^2}$$
    $${ + ^{10}}{c_8}{x^2}{ - ^{11}}{c_9}{x^2}{ + ^{12}}{c_{10}}{x^2}{ - ^{13}}{c_{11}}{x^2}{ + ^{14}}{c_{12}}{x^2}{ - ^{15}}{c_{13}}{x^2}{ + ^{16}}{c_{14}}{x^2}{ - ^{17}}{c_{15}}{x^2}$$
    $$ \Rightarrow {x^2}\left( {1 + 3 + 6 + 10 + 15 + 21 + 28 + 36 + 45 + 55 + 66 + 78 + 91 + 105 + 120 + 136} \right)$$
    = 372 + 444 = 816
  • Question 4
    1 / -0
    Replace the question mark (?) with the correct option.

    Solution

  • Question 5
    1 / -0
    A is a set containing n elements. A  subset P of A is chosen. The set A is reconstructed by replacing the element of P.A subset Q of A is again chosen. The number of way of choosing P and Q so that P Q =$$\phi $$ is :- 
    Solution
    Let A = $${a_{1},a_{2},a_{3},....a_{n}}$$. For $$a_{1}$$ $$\epsilon $$ For $$a_{1} \epsilon $$A we have following choices:
    (i) $$a_{1} \epsilon $$ P and $$a_{1} \epsilon $$ Q
    (ii) $$a_{1} \epsilon $$P $$\notin $$ 
    (iii) $$_{1}\notin P and a_{1}\epsilon Q$$
    (Iv)$$_{1}\notin P and a_{1}\notin  Q$$
    Out of these only (Ii), and (iii)  and (iv) imply $$a_{1}\notin P\cap Q $$ therefore, the number of ways in which none of $$a_{1},a_{2}.....a_{n}$$ belong $$P\cap Q$$ is $$3^{n}$$.
  • Question 6
    1 / -0
    Find the area of the triangle formed by the mid points of sides of the triangle whose vertices are $$(2, 1)$$, $$(-2, 3)$$, $$(4, -3)$$.
  • Question 7
    1 / -0
    Find: $$6,25,62,123,(?),341$$
    Solution
    $$6=2^{3}-2=6$$
    $$25=3^{3}-2=25$$
    $$62=4^{3}-2=62$$
    $$123=5^{3}-2=123$$
    $$214=6^{3}-2=214$$
    $$341=7^3-2=341$$

    Missing term is $$214$$
  • Question 8
    1 / -0
    If $$y=|\cos x|+|\sin x|$$, then $$\dfrac {dy}{dx}$$ at $$x=\dfrac {2\pi}{3}$$  is
    Solution
    $$ y = |cos\,x|+|sin\,x| $$ $$ , x = \dfrac{2n}{3} $$
    $$ y = -cos\,x+sin\,x $$    $$ \left \{ x\sum (\dfrac{\pi }{2},\pi ) \right \} $$
    $$ y^{1} = sinx+cosx $$
    $$ y^{1} = sin(\dfrac{2n}{3})+cos(\dfrac{2n}{3}) $$
    $$ = \dfrac{\sqrt{3}}{2}-\dfrac{1}{2} = \dfrac{\sqrt{3}-1}{2} $$ Option C is correct 

  • Question 9
    1 / -0
    Select the missing number from the given responses ?

    Solution

  • Question 10
    1 / -0
    Number of five-digit numbers divisible by 5 that can be formed from the digits $$0,1, 2, 3, 4, 5$$ without repetition of digits are
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now