Given: $$f(x) = \dfrac{-x^3}{3} + x^2 \sin 1.5\, a - x \sin a . \sin 2a - 5\, arc \sin (a^2 - 8a + 17)$$
$$f(x) = \dfrac{-x^3}{3} + x^2\sin 1.5\, a - x \sin a \times \sin 2a-5\sin^{-1}(a^2-8a+17)$$ $$\left(\sin c + \sin d = 2\sin \dfrac{c+d}{2} \cos \dfrac{c-d}{2}\right)$$
For the function to be defined
$$-1\le a^2 - 8a + 17 \le 1$$
$$-1 \le (a-4)^2 + 1 \le 1$$
$$-1-1\le (a-4)^2 \le 1-1$$
$$-2 \le (a-4)^2 \le 0$$
$$a -4 = 0 \Rightarrow a = 4$$
Putting value of '$$a$$' in the +ve $$f(x)$$
$$f(x) = \dfrac{-x^3}{3} + x^2 \sin 6 - x\sin 4 \times \sin 8 - 5\dfrac{\pi}{2}$$ $$\left[\because \sin^{-1}1 = \dfrac{\pi}{2}\right]$$
domain $$x \in R \because $$ polynomial function
$$f'(x) = -\dfrac{3x^2}{3} + 2x\sin 6 - \sin 4 \times \sin 8$$
$$= -x^2 + 2\sin 6x - \sin 4 \times \sin 8$$
Putting $$x = \sin 8$$
$$f'(\sin 8) = -\sin^28 + 2\sin 6 \sin 8 - \sin 4 \sin 8$$
$$= \sin 8 [2\sin 6 - \sin 4 - \sin 8]$$
$$=\sin 8 [ 2\sin 6 - (\sin 4 + \sin 8)]$$
$$=\sin 8[2\sin 6 - 2\sin 6\cos 2]$$
$$= 2\sin 6 \sin 8 [ 1 - \cos 2]$$
Value of $$\cos 2 = 0.999$$
$$\therefore 1 - \cos 2 = +ve$$
$$6\, rad \approx 344^o$$
$$344^o$$ is in $$IV^{th}$$ quadrant
$$\therefore \sin 6$$ is (-ve)
$$8\, rad \approx 548.4^o$$
$$548.4^o$$ is in $$II^{th}$$ quadrant
$$\therefore \sin 8$$ is (+ve)
$$\therefore f'(\sin 8) = 2\,\underbrace{\sin 6}_{-ve} \,\underbrace{\sin 8}_{+ve} \,\underbrace{(1-\cos 2)}_{+ve}$$
$$\therefore f'(\sin 8)$$ is +ve
$$\therefore f'(\sin 8) < 0$$ $$\to$$ option D