Self Studies

Differentiation Test 43

Result Self Studies

Differentiation Test 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
     Let $$\mathrm{f}(\mathrm{x})=\mathrm{x}+\tan^{-1}\mathrm{x}, \displaystyle \mathrm{g}(\mathrm{x})=\frac{\mathrm{x}}{1+\mathrm{x}^{2}}(\mathrm{x}>0)$$ Then
    Solution
    Let $$\phi (x)=\left ( x+tan^{-1} x\right )-\dfrac{x}{1+x^{2}}$$
    $$\therefore $$  $$\displaystyle \phi'(\mathrm{x})=1+\frac{1}{1+\mathrm{x}^{2}}-\frac{1-\mathrm{x}^{2}}{(1+\mathrm{x}^{2})^{2}}=1+\frac{2\mathrm{x}^{2}}{(1+\mathrm{x}^{2})^{2}}>0 \ for$$ all $$\mathrm{x}$$
    $$\therefore $$ f(x) is increasing in the domain 
    $$\phi(0)=0$$
    $$\therefore $$    $$\displaystyle \mathrm{x}+t\mathrm{a}\mathrm{n}^{-1}\mathrm{x}-\frac{\mathrm{x}}{1+\mathrm{x}^{2}}>0, \mathrm{x}>0$$ 
    $$\Rightarrow \mathrm{f}(\mathrm{x})>g(\mathrm{x}), \mathrm{x}>0$$
  • Question 2
    1 / -0
    lf $$\mathrm{f}(\mathrm{x})$$ is a quadratic expression which is positive for all real vaues of $$\mathrm{x}$$ and $$\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{f}'(\mathrm{x})+\mathrm{f}''(\mathrm{x})$$ then for any real value of $$\mathrm{x}$$
    Solution
    Let $$f(x) =ax^2+bx+c$$
    According to the  given condition $$a>0, b^2-4ac <0$$.........(i)
    $$\therefore g(x) = ax^2+bx+c+2ax+b+2a=ax^2+(b+2a)x+(b+c+2a)$$
    Now discriminant of $$g(x)$$ is $$D=(b+2a)^2-4a(2a+c+b)=b^2+4a^2+4ab-4ab-4ac-8a^2=(b^2-4ac)-4a^2< 0 $$ using (i)
    Hence $$g(x)> 0$$ for any $$x \in R$$
  • Question 3
    1 / -0
    Let $$f$$ be a twice differentiable function such that $$f''\left( x \right) =-f\left( x \right) $$ and $$f'(x)=g(x).$$.
    If $$h'\left( x \right) ={ \left[ f\left( x \right) \right]  }^{ 2 }+{ \left[ g\left( x \right) \right]  }^{ 2 },h\left( 1 \right) =6$$ and $$h(0)=4$$ then $$h(4)$$ is equal to?
    Solution
    Given $$h'\left( x \right) ={ \left[ f\left( x \right)  \right]  }^{ 2 }+{ \left[ g\left( x \right)  \right]  }^{ 2 }$$
    Differentiating both side w.r.t $$x$$, we get
    $$h''\left( x \right) =2f\left( x \right) f'\left( x \right) +2g\left( x \right) g'\left( x \right) \\ =2f\left( x \right) g\left( x \right) +2g\left( x \right) g''\left( x \right) \quad \quad \quad \left[ \because f'\left( x \right) =g\left( x \right)  \right] \\ =2f\left( x \right) g\left( x \right) -2g\left( x \right) f\left( x \right) =0\quad \quad \quad \quad \left[ \because f''\left( x \right) =-f\left( x \right)  \right] $$
    Thus $$h'(x)=k,$$ a constant for all $$x\in R$$.
    Hence $$h(x)=ax+b,$$ so that form $$h(0)=4,$$ we get $$b=4$$
    and from $$h(1)=6$$ we get $$a=2$$
    Therefore $$h(4)=12$$
  • Question 4
    1 / -0
    Let $$f(x) = \sqrt{x - 1} + \sqrt{x + 24 - 10\sqrt{x - 1}}, 1 \le x \le 26$$ be a real valued function, then $$f'(x)$$ for $$1 < x < 26$$ is
    Solution
    We have,
    $$f(x) = \sqrt{x - 1} + \sqrt{x + 24 - 10\sqrt{x - 1}}, 1 < x < 26$$

    Rearrange the terms so as to get $${ \left( a-b \right)  }^{ 2 }=a^2-2ab+b^2$$

    $$f(x) = \sqrt{x - 1} + \sqrt{(x - 1) + 25 - 10\sqrt{x - 1}}$$

    $$\therefore f(x) = \sqrt{x - 1} + \sqrt{(\sqrt {x - 1} - 5)^2}$$

    $$f(x) = \sqrt{x - 1} + \left|\sqrt{x - 1} - 5\right|$$

    $$

    \therefore f(x) = \sqrt{x - 1} - \left(\sqrt{x - 1} - 5\right) \quad\quad

    [\because\sqrt{x - 1} - 5 < 0 \mbox{ for } 1 < x < 26]$$
    Now, differentiating w.r. to $$x$$, we get
    $$\therefore f'(x) = 0$$ for all $$x \in (1, 26)$$
  • Question 5
    1 / -0
    Given, $$f(x)=-\displaystyle \frac {x^3}{3}+x^2 \sin 1.5 a-x \sin a\cdot \sin 2a-5 arc \sin (a^2-8a+17)$$, then
    Solution
    $$f(x)=-\displaystyle \frac {x^3}{3}+x^2 \sin 1.5 a-x \sin a\cdot \sin 2a-5 arc \sin (a^2-8a+17)$$
    $$f(x)=\displaystyle \frac { -{ x }^{ 3 } }{ 3 } +{ x }^{ 2 }\sin { 6 } -x\sin { 4\sin { 8 } -5\sin ^{ -1 }{ \left( { \left( a-4 \right)  }^{ 2 }+1 \right)  }  } $$
    $$f'(x)=-{ x }^{ 2 }+2x\sin { 6-\sin { 4.\sin { 8 }  }  }$$ .......( $$a=4 $$ considering the domain of inverse sine function) 
    $$f'\left( \sin { \quad 8 }  \right) =-\sin ^{ 2 }{ 8 } +2\sin { 6 } \sin { 8 } -\sin { 4 } \sin { 8 } $$
    $$=\sin { 8\left( -\sin { 8+2\sin { 6-\sin { 4 }  }  }  \right)  } $$
    $$=-\sin { 8 } \left( \sin { 8 } +\sin { 4-2\sin { 6 }  }  \right) $$
    $$=-\sin { 8\left( 2\sin { 6\cos { 2-2\sin { 6 }  }  }  \right)  } $$
    $$=2\sin { 8 } \sin { 6\left( 1-\cos { 2 }  \right)  } $$
    Now, 
    $$sin 8 > 0 $$           (Since,$$  2\pi  <  8 < 3\pi $$ )
    $$ sin 6 < 0 $$          (Since, $$\pi < 6 < 2\pi$$)
    $$(1-\cos 2) > 0$$      
    Hence, $$f'(\sin { 8 } )<0$$
  • Question 6
    1 / -0
    Let f be a twice differentiable such that $$f''(x)=-f(x)$$ and $$f'(x)=g(x)$$. If $$h(x)=\left \{f(x)\right \}^2+\left \{g(x)\right \}^2$$, where $$h(5)=11$$. Find $$h(10)$$
    Solution
    $$h'(x) = 2f(x) \times f'(x) + 2 g(x) g'(x)$$

    $$g(x) = f'(x)$$

    $$g'(x) = f^{\prime \prime} (x) = -f(x)$$

    $$h'(x) = 2 f(x) f'(x) - 2 g(x) f(x)$$

    $$h'(x) = 2 f(x) g(x) - 2 g(x) f(x)$$

               $$= 0$$


    $$\therefore h'(x)= 0$$

    $$\Rightarrow \dfrac{d}{dx} h(x) = 0$$

    $$\Rightarrow \displaystyle \int d \ h(x) = \int 0 \times dx$$

    $$\Rightarrow h(x)  = 0 + c$$

    $$\Rightarrow h(x) = c$$

    now, $$h(5) = 11$$

    $$\therefore h(10) = h(5) = 11$$
  • Question 7
    1 / -0
    Let $$f$$ be a differentiable function satisfying $$f(x) + f(y) + f(z) + f(x)f(y)f(z) = 14$$ for all $$x,\space y,\space z \in R$$
    Then,
    Solution
    We have,
    $$f(x) + f(y) + f(z) + f(x)f(y)f(z) = 14$$ for all $$x,\space y,\space z \in R \quad\quad ...(i)$$
    Putting $$x = y = z = 0$$, we get,
    $$3f(0) + \left\{f(0)\right\}^3 = 14$$
    $$\left\{f(0)\right\}^3 + 3f(0) - 14 = 0$$
    $$f(0) = 2.$$
    Now, putting $$y = z = x$$ in $$(i)$$, we get
    $$3f'(x) + 3\left\{f(x)\right\}^2f'(x) = 0 \quad$$ for all $$x \in R$$
    $$\left\{\left\{f(x)\right\}^2 + 1\right\}f'(x) = 0 \quad$$ for all $$x \in R$$
    $$ f'(x) = 0 \quad$$ for all $$x \in R$$
  • Question 8
    1 / -0
    The function $$f(x)=e^x+x$$ being differentiable and one to one, has a differentiable inverse $$f^{-1}(x)$$, then find $$\dfrac {d}{dx} (f^{-1}(x))$$ at the point $$f(log_e 2)$$.
    Solution
    Let $$y=e^x+x$$
    on differentiating w.r.t y,
    $$1=(e^x+1)\dfrac {dx}{dy}\Rightarrow \dfrac {dx}{dy}=\dfrac {1}{1+e^x}$$
    $$\therefore \left (\dfrac {dx}{dy}\right )_{x=log_e2}=\dfrac {1}{1+e^{log 2}}=\dfrac {1}{3}$$
    or $$\left [\dfrac {d}{dx}(f^{-1}(x))\right ]_{x=log 2}=\dfrac {1}{3}$$
  • Question 9
    1 / -0
    Given  $$f(x)=-\displaystyle \frac{x^3}{3}+x^2\sin 1.5a-x\sin a.\sin 2a-5 \arcsin (a^2-8a+17)$$ then :
    Solution
    Given:
    $$f(x) = \dfrac{-x^3}{3} + x^2 \sin 1.5\, a - x \sin a . \sin 2a - 5\, arc \sin (a^2 - 8a + 17)$$

    $$f(x) = \dfrac{-x^3}{3} + x^2\sin 1.5\, a - x \sin a \times \sin 2a-5\sin^{-1}(a^2-8a+17)$$                   $$\left(\sin c + \sin d = 2\sin \dfrac{c+d}{2} \cos \dfrac{c-d}{2}\right)$$

    For the function to be defined

    $$-1\le a^2 - 8a + 17 \le 1$$

    $$-1 \le (a-4)^2 + 1 \le 1$$

    $$-1-1\le (a-4)^2 \le 1-1$$

    $$-2 \le (a-4)^2 \le 0$$

    $$a -4 = 0 \Rightarrow a = 4$$

    Putting value of '$$a$$' in the +ve $$f(x)$$

    $$f(x) = \dfrac{-x^3}{3} + x^2 \sin 6 - x\sin 4 \times \sin 8 - 5\dfrac{\pi}{2}$$      $$\left[\because \sin^{-1}1 = \dfrac{\pi}{2}\right]$$

    domain $$x \in R \because $$ polynomial function

    $$f'(x) = -\dfrac{3x^2}{3} + 2x\sin 6 - \sin 4 \times \sin 8$$

    $$= -x^2 + 2\sin 6x - \sin 4 \times \sin 8$$

    Putting $$x = \sin 8$$

    $$f'(\sin 8) = -\sin^28 + 2\sin 6 \sin 8 - \sin 4 \sin 8$$

    $$= \sin 8 [2\sin 6 - \sin 4 - \sin 8]$$

    $$=\sin 8 [ 2\sin 6 - (\sin 4 + \sin 8)]$$

    $$=\sin 8[2\sin 6 - 2\sin 6\cos 2]$$

    $$= 2\sin 6 \sin 8 [ 1 - \cos 2]$$

    Value of $$\cos 2 = 0.999$$

    $$\therefore 1 - \cos 2 = +ve$$

    $$6\, rad \approx  344^o$$

    $$344^o$$ is in $$IV^{th}$$ quadrant

    $$\therefore \sin 6$$ is (-ve)

    $$8\, rad \approx  548.4^o$$

    $$548.4^o$$ is in $$II^{th}$$ quadrant

    $$\therefore \sin 8$$ is (+ve)

    $$\therefore f'(\sin 8) = 2\,\underbrace{\sin 6}_{-ve} \,\underbrace{\sin 8}_{+ve} \,\underbrace{(1-\cos 2)}_{+ve}$$

    $$\therefore f'(\sin 8)$$ is +ve

    $$\therefore f'(\sin 8) < 0$$      $$\to$$  option D
  • Question 10
    1 / -0
    Suppose, $$A=\displaystyle \frac {dy}{dx}$$ of $$x^2+y^2=4$$ at $$(\sqrt 2, \sqrt 2), B=\displaystyle \frac {dy}{dx}$$ of $$sin y+sin x=sin x\cdot sin y$$ at $$(\pi, \pi)$$ and $$C=\displaystyle \frac {dy}{dx}$$ of $$2e^{xy}+e^xe^y-e^x=e^{xy+1}$$ at $$(1, 1)$$, then $$(A-B-C)$$ has the value equal to .....
    Solution
    $$A: \displaystyle \frac {d}{dx} (x^2+y^2=4)$$ at $$(\sqrt 2, \sqrt 2))$$
    $$2x+2y\displaystyle \frac { dy }{ dx } =0$$
    $$\displaystyle \frac { dy }{ dx } =-\displaystyle \frac { x }{ y } =-\displaystyle \frac { \sqrt { 2 }  }{ \sqrt { 2 }  } =-1$$
    $$ B: \displaystyle \frac {d}{dx}(\sin y+\sin x=\sin x\cdot \sin y)$$ at $$(\pi, \pi)$$
    $$\cos { y\displaystyle \frac { dy }{ dx }  } +\cos { x } =\sin { x } \cos { y\displaystyle \frac { dy }{ dx } +\sin { y } \cos { x }  } $$
    $$\displaystyle \frac { dy }{ dx } \left( \cos { y } -\sin { x } \cos { y }  \right) =\sin { y\cos { x-\cos { x }  }  } $$
    $$\displaystyle \frac { dy }{ dx } =\displaystyle \frac { \cos { x\left( \sin { y-1 }  \right)  }  }{ \cos { y\left( 1-\sin { x }  \right)  }  } $$
    $$B=\displaystyle \frac { -1\left( 0-1 \right)  }{ -1\left( 1-0 \right)  } =-1$$
    $$C: \displaystyle \frac {d}{dx}(2e^{xy}+e^xe^y-e^x=e^{xy+1})$$ at $$(1, 1)$$
    $$\left[ 2{ e }^{ xy }\left( x\displaystyle \frac { dy }{ dx } +y \right)  \right] +{ e }^{ x }{ e }^{ y }\displaystyle \frac { dy }{ dx } +{ e }^{ y }{ e }^{ x }-{ e }^{ x }={ e }^{ xy+1 }\left( x\displaystyle \frac { dy }{ dx } +y \right) $$
    $$\displaystyle \frac { dy }{ dx } =\displaystyle \frac { y{ e }^{ xy+1 }-2y{ e }^{ xy }-{ e }^{ x+y }+{ e }^{ x } }{ 2x{ e }^{ xy }+{ e }^{ x+y }-x{ e }^{ xy+1 } } $$.......... since $${ e }^{ x }{ e }^{ y }={ e }^{ x+y }$$
    $$C=\displaystyle \frac { { e }^{ 2 }-2{ e }^{ 1 }-{ e }^{ 2 }+{ e }^{ 1 } }{ 2{ e }^{ 1 }+{ e }^{ 2 }-{ e }^{ 2 } } $$
    $$=\displaystyle \frac { -{ e }^{ 1 } }{ 2{ e }^{ 1 } } =-\displaystyle \frac { 1 }{ 2 } $$
    Therefore $$A-B-C=\displaystyle \frac { 1 }{ 2 }$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now