Self Studies

Differentiation Test 44

Result Self Studies

Differentiation Test 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Suppose $$A=\displaystyle \frac{dy}{dx}$$ when $$x^2+y^2=4$$ at $$(\sqrt{2},\sqrt{2})$$,$$ B=\displaystyle \frac{dy}{dx}$$ when $$\sin y+ \sin x=\sin x-\sin y$$ at $$(\pi,\pi)$$ and $$C=\displaystyle  \frac{dy}{dx}$$ when $$2e^{xy}+e^x e^y-e^x-e^y=e^{xy+1}$$ at $$(1,1)$$, then $$(A+B+C)$$ has the value equal to 
    Solution
    $$A: \displaystyle \frac {d}{dx} (x^2+y^2=4)$$ at $$(\sqrt 2, \sqrt 2))$$
    $$2x+2y\displaystyle \frac { dy }{ dx } =0$$
    $$\displaystyle \frac { dy }{ dx } =-\displaystyle \frac { x }{ y } =-\displaystyle \frac { \sqrt { 2 }  }{ \sqrt { 2 }  } =-1$$
    $$ B: \displaystyle \frac {d}{dx}(\sin y+\sin x=\sin x\cdot \sin y)$$ at $$(\pi, \pi)$$
    $$\cos

    { y\displaystyle \frac { dy }{ dx }  } +\cos { x } =\sin { x } \cos {

    y\displaystyle \frac { dy }{ dx } +\sin { y } \cos { x }  } $$
    $$\displaystyle \frac { dy }{ dx } \left( \cos { y } -\sin { x } \cos { y }  \right) =\sin { y\cos { x-\cos { x }  }  } $$
    $$\displaystyle

    \frac { dy }{ dx } =\displaystyle \frac { \cos { x\left( \sin { y-1 } 

    \right)  }  }{ \cos { y\left( 1-\sin { x }  \right)  }  } $$
    $$B=\displaystyle \frac { -1\left( 0-1 \right)  }{ -1\left( 1-0 \right)  } =-1$$
    $$C: \displaystyle \frac {d}{dx}(2e^{xy}+e^xe^y-e^x-{ e }^{ y }=e^{xy+1})$$ at $$(1, 1)$$
    $$\left[

    2{ e }^{ xy }\left( x\displaystyle \frac { dy }{ dx } +y \right) 

    \right] +{ e }^{ x }{ e }^{ y }\displaystyle \frac { dy }{ dx } +{ e }^{

    y }{ e }^{ x }-{ e }^{ x } -{ e }^{ y }\frac { dy }{ dx } ={ e }^{ xy+1 }\left( x\displaystyle \frac {

    dy }{ dx } +y \right) $$
    $$\displaystyle \frac { dy }{ dx }

    =\displaystyle \frac { y{ e }^{ xy+1 }-2y{ e }^{ xy }-{ e }^{ x+y }+{ e

    }^{ x } }{ 2x{ e }^{ xy }+{ e }^{ x+y }-x{ e }^{ xy+1 }-{ e }^{ y } } $$..........

    since $${ e }^{ x }{ e }^{ y }={ e }^{ x+y }$$
    $$C=\displaystyle \frac { { e }^{ 2 }-2{ e }^{ 1 }-{ e }^{ 2 }+{ e }^{ 1 } }{ 2{ e }^{ 1 }+{ e }^{ 2 }-{ e }^{ 2 }-{ e }^{ 1 } }=-{1} $$
    $$A+B+C=-1-1-1=-3$$
  • Question 2
    1 / -0
    If $$f(x)=\sqrt {x+2\sqrt {2x-4}}+\sqrt {x-2\sqrt {2x-4}}$$, then the value of $$10 f'(102^+)$$ is
    Solution
    $$f(x)=\sqrt {x+2\sqrt {2x-4}}+\sqrt {x-2\sqrt {2x-4}}$$
    $$f(x)=\sqrt { { \left( \sqrt { x-2 } +\sqrt { 2 }  \right)  }^{ 2 } } +\sqrt { { \left( \sqrt { x-2 } -\sqrt { 2 }  \right)  }^{ 2 } } $$
    $$f(x)=\left| \sqrt { x-2 } +\sqrt { 2 }  \right| +\left| \sqrt { x-2 } -\sqrt { 2 }  \right| \\ $$
    For $$\sqrt { x-2 }$$  to exist, $$x\ge 2$$
    Also $$\sqrt { x-1 } +\sqrt { 2 } >0$$.............(always true)
    But $$\sqrt { x-1 } -\sqrt { 2 } \ge 0\quad $$ only if $$x\ge 4$$
                                             $$<0$$ only if $$x<4$$
    Now $$f(x)$$ becomes
    $$f(x)=\sqrt { x-2 } +\sqrt { 2 } -\sqrt { x-2 } +\sqrt { 2 } $$ for $$2\le x<4$$
    $$f(x)=\sqrt { x-2 } +\sqrt { 2 } +\sqrt { x-2 } -\sqrt { 2 } $$ for $$ x\ge 4$$
    $$f(x)=2\sqrt { 2, } $$ for $$2\le x<4$$
    $$f(x)=2\sqrt { x-2 } $$ for $$4\le x<\infty $$

    f is continous $$\left[ 2,4 \right] \cup \left[ 4,\infty  \right] $$
    $$f'(x)=0$$  for $$2\le x<4$$

    $$f'(x)=\displaystyle \frac { 1 }{ \sqrt { x-2 }  } $$ for $$\le x<\infty $$
    $$f'({ 102 }^{ + })=\displaystyle \frac { 1 }{ \sqrt { 102-2 }  } =\displaystyle \frac { 1 }{ 10 } \\ 10f'({ 102 }^{ + })=1$$
  • Question 3
    1 / -0
    $$\displaystyle y=\left ( 1+\frac{1}{x} \right )^{x}+x^{1+\frac{1}{x}}.$$
    Differentiate
    Solution

    Let $$y = y_1+y_2$$
    $$\Rightarrow \cfrac{dy}{dx}=\cfrac{dy_1}{dx}+\cfrac{dy_2}{dx}$$
    Now $$y_1 = \left(1+\frac{1}{x}\right)^x \Rightarrow \log y_1 =x \log\left(1+\frac{1}{x}\right)$$


    Differentiating both side w.r.t $$x$$


    $$\Rightarrow \cfrac{1}{y_1}\cfrac{dy_1}{dx} = \log(1+\frac{1}{x})+x.\cfrac{1}{1+\frac{1}{x}}.\left(\frac{-1}{x}^2\right)$$


    $$\Rightarrow \cfrac{dy_1}{dx} = y_1\left[\log(1+\frac{1}{x})-\cfrac{1}{1+x}\right]$$
    And $$y_2  = x^{1+\frac{1}{x}} \Rightarrow \log y_2 = (1+\frac{1}{x}) \log x$$


    Differentiating both sides, 


    $$\Rightarrow \cfrac{1}{y_2}\cfrac{dy_2}{dx} = (1+\frac{1}{x})\cfrac{1}{x}+(\log x)(\frac{-1}{x}^2)$$


    $$\Rightarrow \cfrac{dy_2}{dx} = y_2\left[\cfrac{(1+x)- \log x}{x^2}\right]$$
    $$\therefore

    \cfrac{dy}{dx} = 

    \left(1+\cfrac{1}{x}\right)\left[\log(1+\frac{1}{x})-\cfrac{1}{1+x}\right]+x^{1+\frac{1}{x}}\left[\cfrac{(1+x)-

    \log x}{x^2}\right]$$

     

  • Question 4
    1 / -0
    The number of distinct rational numbers x such that $$\displaystyle 0 < x < 1$$ and $$\displaystyle x = \frac{p}{q}r$$, where $$\displaystyle p,q \epsilon \left \{ 1,2,3,4,5,6 \right \}$$,is
    Solution
    Since total number of digits $$=6$$
    So to get a number of a number of the form $$\dfrac { p }{ q } $$ we will have to choose two numbers out of the 6 numbers.
    There is only one way to arrange them since the number $$x$$ has to satisfy 0 Hence no.  $$x = \left( \begin{matrix} 6 \\ 2 \end{matrix} \right) \times 1=15$$,  but some numbers have to be removed because they are repeated.
    They are :
    $$\dfrac { 2 }{ 4 } =\dfrac { 1 }{ 2 } \\ \dfrac { 4 }{ 6 } =\dfrac { 2 }{ 3 } \\ \dfrac { 2 }{ 6 } =\dfrac { 1 }{ 3 } \\ \dfrac { 3 }{ 6 } =\dfrac { 1 }{ 2 } $$
    Thus the number of removed numbers$$=4$$
    Therefore, total no. of distinct $$x = 15-4=11$$
    Hence, option 'D' is correct.
  • Question 5
    1 / -0
    The number of ways in which three numbers in A.P. can be seleced from the set of first n natural number if n is odd is
    Solution
    In order to solve this question, we must observe the number of ways in which we can select the first term of the required A.P. for different values of the common difference($$r$$) starting from $$r=1$$ given that there are only $$3$$ terms before $$n$$.
    For $$r=1$$, the number of ways in which we can select the first term of the A.P. $$=n-2$$
    For $$r=2$$, the number of ways to select the first term $$=n-4$$
    For $$r=3$$, the number of ways to select the first term $$=n-6$$
    Now we see a pattern emerging, we also realize from this that $$r<=\dfrac{n-1}{2}$$ for an A.P. with 3 terms to exist in the given interval.
    $$\therefore$$ The final answer $$=n-2+n-4+n-6+...+5+3+1$$
    Now we use the formula to find the sum of an A.P. which is $$S_n=\dfrac{n}{2}[a_1+a_n]$$ 
    $$\therefore$$ Answer $$=\dfrac{n-1}{4}[1+n-2]=\dfrac{(n-1)^2}{4}$$
  • Question 6
    1 / -0
    If $$\displaystyle y=\sum _{ r=1 }^{ x }{ \tan ^{ -1 }{ \frac { 1 }{ 1+r+{ r }^{ 2 } }  }  } $$ then $$\displaystyle \frac { dy }{ dx } $$ is equal to
    Solution
    We have, 
    $$\displaystyle y=\sum _{ r=1 }^{ x }{ \tan ^{ -1 }{ \frac { 1 }{ 1+r+{ r }^{ 2 } }  }  } =\sum _{ r=1 }^{ x }{ \tan ^{ -1 }{ \left( \frac { \left( r+1 \right) -r }{ 1+\left( r+1 \right) r }  \right)  }  } $$
    $$\displaystyle =\sum _{ r=1 }^{ x }{ \left[ \tan ^{ -1 }{ \left( r+1 \right)  } -\tan ^{ -1 }{ r }  \right]  } $$
    $$=\left[ \tan ^{ -1 }{ 2 } -\tan ^{ -1 }{ 1 } +\tan ^{ -1 }{ 3 } -\tan ^{ -1 }{ 2 } +...+\tan ^{ -1 }{ x } -\tan ^{ -1 }{ \left( x-1 \right)  } +\tan ^{ -1 }{ \left( x+1 \right)  } -\tan ^{ -1 }{ x }  \right] $$
    $$=\left[ \tan ^{ -1 }{ \left( x+1 \right)  } -\tan ^{ -1 }{ 1 }  \right] $$
    $$\displaystyle \therefore \frac { dy }{ dx } =\frac { 1 }{ 1+{ \left( x+1 \right)  }^{ 2 } } .$$
  • Question 7
    1 / -0
    If $$\displaystyle \frac { \cos ^{ 4 }{ \theta  }  }{ x } +\frac { \sin ^{ 4 }{ \theta  }  }{ y } =\frac { 1 }{ x+y } $$ then $$\displaystyle \frac { dy }{ dx } =$$
    Solution
    Given $$\displaystyle \dfrac { \cos ^{ 4 }{ \theta  }  }{ x } +\dfrac { \sin ^{ 4 }{ \theta  }  }{ y } =\dfrac { 1 }{ x+y } $$

    $$\displaystyle \Rightarrow \left( x+y \right) \left( \dfrac { \cos ^{ 4 }{ \theta  }  }{ x } +\dfrac { \sin ^{ 4 }{ \theta  }  }{ y }  \right) ={ \left( \cos ^{ 2 }{ \theta  } +\sin ^{ 2 }{ \theta  }  \right)  }^{ 2 }$$  $$ {  \left( \because \cos ^{ 2 }{ \theta  } +\sin ^{ 2 }{ \theta  } =1 \right)  }$$


    $$\displaystyle \therefore \dfrac { y }{ x } \cos ^{ 4 }{ \theta  } +\dfrac { x }{ y } \sin ^{ 4 }{ \theta  } -2\sin ^{ 2 }{ \theta  } \cos ^{ 2 }{ \theta  } =0$$

    $$\displaystyle \Rightarrow { \left( \sqrt { \dfrac { y }{ x }  } \cos ^{ 2 }{ \theta  } -\sqrt { \dfrac { x }{ y }  } \sin ^{ 2 }{ \theta  }  \right)  }^{ 2 }=0$$

    $$\displaystyle \therefore \tan ^{ 2 }{ \theta  } =\dfrac { y }{ x } \Rightarrow y=x\tan ^{ 2 }{ \theta  } $$

    $$\displaystyle \Rightarrow \dfrac { dy }{ dx } =\tan ^{ 2 }{ \theta  } $$
  • Question 8
    1 / -0
    In a test there were n questions. In the test $$\displaystyle 2^{n-i}$$ students gave wrong answers to i questions where $$\displaystyle i=1,2,3...,n$$. If the total number of wrong answers given is 2047 then n is
    Solution
    Total number of wrong answers $$= 2^{n-1}+2^{n-2}+...+2^{2}+2+1$$
    $$=2^{n-1}+2^{n-2}+...+2^{4}+2^{3}+2^{2}+2+1$$
    $$\Rightarrow 2^{n}-1=2043$$  [Using formula for sum of G.P]
    $$ \Rightarrow 2^{n}=2048$$
    $$ \Rightarrow 2^{n}=2^{11}$$
    $$\Rightarrow n = 11$$
    Hence, option 'B' is correct.
  • Question 9
    1 / -0
    If the prime sign (') represents differentiation w.r.t. $$x$$ and $$f^{'}=\sin x+\sin 4x.\cos x$$, then $$f^{'}\left ( 2x^{2}+\cfrac{\pi }{2} \right )$$ at $$x=\sqrt{\dfrac{\pi }{2}}$$ is equal to
    Solution
    Given $$f^{'}(x)=\sin x+\sin 4x.\cos x$$ 
    Now, $$f^{'}\left ( 2x^{2}+\dfrac{\pi }{2} \right )$$
       $$=f^{ ' }\left( 2x^{ 2 }+\dfrac { \pi  }{ 2 }  \right) \dfrac { d }{ dx } \left( 2x^{ 2 }+\dfrac { \pi  }{ 2 }  \right) $$

    $$=\left[ \sin  \left( 2x^{ 2 }+\dfrac { \pi  }{ 2 }  \right) +\sin  4\left( 2x^{ 2 }+\dfrac { \pi  }{ 2 }  \right) .\cos  \left( 2x^{ 2 }+\dfrac { \pi  }{ 2 }  \right)  \right] 4x$$

    $$=\left[ \cos  2x^{ 2 }-\sin  8x^{ 2 }.\sin  2x^{ 2 } \right] 4x$$

    $$=\left[ \cos  \pi -\sin  4\pi .\sin  \pi  \right] 4\sqrt { \dfrac { \pi  }{ 2 }  } $$
    $$=-2\sqrt{2\pi}$$
  • Question 10
    1 / -0
    If $$y=\left | \cos x \right |+\left | \sin x \right |$$ then $$\frac{dy}{dx}$$ at $$x=\frac{2\pi }{3}$$ is
    Solution
    $$\displaystyle \dfrac{\mathrm{d} y}{\mathrm{d} x}=\dfrac{-cosxsinx}{|cosx|}+\dfrac{cosxsinx}{|sinx|}$$

    $$\displaystyle \dfrac{\mathrm{d} y}{\mathrm{d} x}|_{x=\dfrac{2\pi }{3}}$$

    $$\displaystyle =\dfrac{-cos\dfrac{2\pi }{3}sin\dfrac{2\pi }{3}}{|cos\dfrac{2\pi }{3}|}+\dfrac{cos\dfrac{2\pi }{3}sin\dfrac{2\pi }{3}}{|sin\dfrac{2\pi }{3}|}$$

    $$\displaystyle =\dfrac{sin\dfrac{2\pi }{3}}{1}+\dfrac{cos\dfrac{2\pi }{3}}{1}$$

    $$=\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}$$

    $$\displaystyle =\dfrac{\sqrt{3}-1}{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now