$$\textbf{Step 1: Find the value of n}$$
$$\text{If a,b,c are in A.P,then}$$
$$2b=a+c$$
$$\text{So applying the same conditions, we have}$$
$$\Rightarrow$$ $$2 \times\left({ }^{n} c_{5}\right)=\left({ }^{n} C_{6}\right)+\left({ }^{n} C_{4}\right)$$
$$\text{We know that,}$$
$${ }^{n} C_{r} = \dfrac{ n !}{r !(n-r) !}$$
$$\Rightarrow$$$$\dfrac{2 \times n !}{5 !(n-5) !}=\dfrac{n !}{6 !(n-6) !}+\dfrac{n !}{4 !(n-4) !}$$
$$\Rightarrow \dfrac{2}{5 !(n-5) !}=\dfrac{1}{6(n-6) !}+\dfrac{1}{4 !(n-4) !} $$
$$\Rightarrow \dfrac{2}{5 !(n-5)(n-6) !}=\dfrac{1}{6 !(n-6) !}+\dfrac{1}{4 !(n-4)(n-5)(n-6)!} $$
$$ \Rightarrow \dfrac{2}{5 !(n-5)}=\dfrac{1}{6 !}+\dfrac{1}{4 !(n-4)(n-5)} $$
$$\Rightarrow \dfrac{2}{5 \times 4 ! \times(n-5)}=\dfrac{1}{6 \times 5 \times 4 !}+\dfrac{1}{4 !(n-4)(n-5)} $$
$$=\dfrac{2}{5 \times(n-5)}=\dfrac{1}{6 \times 5}+\dfrac{1}{(n-4)(n-5)}$$
$$\Rightarrow \dfrac{2}{5 \times(n-5)}-\dfrac{1}{(n-4)(n-5)}=\dfrac{1}{6 \times 5}$$
$$\Rightarrow 12 n-78=n^{2}-9 n+20$$
$$\Rightarrow n^2-21n+98=0$$
$$\Rightarrow (n-7)(n-14)=0$$
$$\therefore n=14$$ $$\text{(or)}$$ $$n=7$$
$$\textbf{Hence, option A is correct.}$$