Self Studies

Sequences and Series Test 18

Result Self Studies

Sequences and Series Test 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In a combination, the ordering of the selected objects is immaterial whereas in a permutation, the ordering is essential.
    Solution
    Combination of few things .
    The order of selected  things is not specified .
    Combination is basically selection hence ordering in immaterial .
    Permtation of few things the order of selected things is specified .
    Permutation basically means selecting and arranging .
    Hence ordering is essential .
  • Question 2
    1 / -0
    There are $$6$$ boxes numbered $$1, 2 ....... 6$$. Each box is to be filled up either with a red or a green ball in such a way that at least $$1$$ box contains a green ball and the boxes containing green balls are consecutively numbered. The total number of ways in which this can be done is:
    Solution
    (B) The number of ways in which 1 green ball can be put $$=6$$ . The number of ways in which two green balls can be put such that the boxes are consecutive 
    $$=5$$ $$(i.e., (1, 2),(2, 3),(3, 4),(4, 5),(5, 6))$$

    Similarly, the number of ways in which three green balls can be put 
    $$=4( i.e. (1, 2, 3),(2, 3, 4),(3, 4, 5),(4, 5, 6))$$
    $$\cdots \cdots \cdots \cdots \cdots $$ and so on.
    $$\therefore $$ Total number of ways of doing this
    $$=6+5+4+3+2+1=21$$
  • Question 3
    1 / -0
    Rajdhani Express going from Bombay to Delhi stops at five inter-mediate stations, $$10$$ passengers enter the train during the journey with $$10$$ different ticket of two classes. The number of different sets of tickets they may have is
    Solution
    For a particular class, the total number of different tickets from first intermediate station is $$5.$$ 
    Similarly, number of different tickets from second intermediate station is $$4.$$ 
    So the total number of different tickets is $$5+4+3+2+1=15$$.
    And same number of tickets for another class is equal to total number of different tickets, 
    which is equal to $$30$$ and number of selection is $$^{30}C_{10}$$.
  • Question 4
    1 / -0
    Find the area of the triangle whose vertices are $$(3,2), \ (-2, -3)$$ and $$(2,3)$$.
    Solution
    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 });$$ $$({ x }_{ 2 },y_2)$$ and $$({ x }_{ 3 },{ y }_{ 3 })$$
    $$ = \left |\dfrac{ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3 (y_1 - y_2) } {2} \right |$$

    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (3,2) $$ ; $$({ x }_{ 2 },{ y }_{ 2 }) = (-2,-3) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (2,3)$$ 
    in the area formula, we get

    Area = $$\left | \dfrac {3(-3-3) +(-2)(3-2) + 2 (2-(-3)) }{2}\right | = 5 $$ sq. unit
  • Question 5
    1 / -0
    Find the area of the right-angled triangle whose vertices are $$(2, -2)$$ , $$(-2, 1)$$ and $$(5, 2).$$
    Solution

    Let the points be $$ A(2,-2), B(-2,1), C(5,2) $$.

    Distance between two points $$ \left( { x }_{ 1 },{ y }_{ 1} \right) $$ and $$ \left( { x }_{ 2 },{ y }_{ 2 } \right) $$ can be calculated using the formula $$ \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$

    Hence, Length of side AB $$ = \sqrt { \left(-2-2 \right) ^{ 2 }+\left(1 + 2\right) ^{ 2 } } = \sqrt { 16+ 9 } = \sqrt { 25 }  = 5 $$ 

    Length of side BC $$ = \sqrt {\left(5 + 2\right) ^{ 2 }+\left(2-1\right) ^{ 2 } } = \sqrt { 49 + 1 } = \sqrt { 50} $$

    Length of side AC $$ = \sqrt { \left(5-2 \right) ^{ 2 }+\left(2+ 2\right) ^{ 2 } } = \sqrt { 9+16 } = \sqrt { 25 }  = 5 $$

    Since, $$ {(\sqrt { 50 }) }^{2} = { 5 }^{2} + { 5 }^{2} $$,
    $$ \Rightarrow {BC}^{2} ={AB}^{2} + {AC}^{2} $$
    Hence, the triangle has a right angle at $$A$$, with $$AB$$ and $$AC$$ as base and height.
    So, area of the triangle $$ABC = \cfrac {1}{2} \times base \times height = \cfrac {1}{2} \times 5 \times 5= \cfrac {25}{2}$$ sq  units.
  • Question 6
    1 / -0
    Observe the given multiples of 37.
    $${37\times3=111}$$
    $${37\times 6 =222}$$
    $${37\times9=333}$$
    $${37\times12=444}$$-------------------------------
    Find the product of $${37\times27}$$
    Solution
    $${37\times3=37\times(3\times1)=111}$$
    $${37\times 6=37\times(3\times2)=222}$$
    $${37\times9=37\times(3\times3)=333}$$


    $${37\times27=37\times(3\times9)=999}$$
  • Question 7
    1 / -0
    Consider the points $$A( a, b + c)$$, $$B(b, c + a)$$, and $$C(c, a +b)$$ be the vertices of $$\bigtriangleup$$ABC. The area of $$\bigtriangleup$$ABC is:
    Solution
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    Since, vertices are $$A(a, b + c),~ B(b, c + a),$$ and $$ C(c, a + b)$$
    $$\therefore$$ Area $$ \bigtriangleup ABC = \dfrac{1}{2}|a(c + a) -b(b + c) + b(a + b) - c(c + a) +c(b + c) -a(a + b)|=0$$ .
    Hence option 'D' is correct.
  • Question 8
    1 / -0
    $$(3, 1), (-3, 2)$$ and $$\displaystyle (0,2-\sqrt{3})$$ are the vertices of __________ triangle of area ___________.
    Solution

    Distance between two points $$= \sqrt { \left( { x }_{ 2 }-{x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$
    Distance between the points $$A (3,1) $$ and $$B (-3,2) = \sqrt { \left( -3-3 \right) ^{ 2 }+\left( 2 - 1 \right) ^{ 2 } } = \sqrt { 36 + 1 } = \sqrt { 37 }$$

    Distance between the points $$B(-3,2) $$ and $$C (0,2-\sqrt {3}) = \sqrt { \left( 0 + 3 \right) ^{ 2 }+\left(2 - \sqrt {3} - 2\right) ^{ 2 } } = \sqrt { 9 + 3 } = \sqrt { 12 } $$

    Distance between the points $$A(3,1) $$ and $$ C(0,2-\sqrt {3})$$

    $$ = \sqrt { \left( 0-3\right) ^{ 2 }+\left( 2-\sqrt {3} - 1\right) ^{ 2 } } = \sqrt { 9 + 1 + 3 -2\sqrt {3} } = \sqrt { 13 - 2\sqrt {3} } $$

    Since the length of the sides between all vertices are different, they are the vertices of  a scalene triangle. 

    Area of a triangle $$= \left| \cfrac { {x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Area of $$\triangle ABC= \left| \cfrac {  (3)(2-2+\sqrt {3})+(-3)(2-\sqrt {3} - 1)+0(1-2) }{ 2 } \right| $$

    $$ = \left| \cfrac { 3\sqrt {3} -3 + 3\sqrt {3} }{ 2 }  \right| $$

    $$ = \cfrac{-3 + 6 \sqrt {3}}{2}$$ sq. units

  • Question 9
    1 / -0
    Find the area of the triangle formed by joining the midpoints of the sides of the triangle whose vertices are $$(2,2)$$, $$(4,4)$$ and $$(2,6)$$.
    Solution
    Let $$ A(2,2), B(4,4) $$ and $$ C(2,6) $$ be the vertices of a given triangle ABC.

    Let D, E, and F be the midpoints of AB, BC and CA respectively.

    Mid point of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y }_{

    2 }) $$ is  calculated by the formula $$ \left( \dfrac { { x }_{ 1 }+{ x

    }_{ 2 } }{ 2 } ,\dfrac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$

    Using this formula,
    the coordinates of D, E, and F are given as $$\displaystyle  D \left (\frac{2+4}{2},\frac {2+4}{2} \right ), E\left (\frac {4+2}{2},\frac {4+6}{2}\right ) $$ and $$ F\left (\dfrac {2+2}{2},\dfrac {2+6}{2} \right ) $$

    i.e., $$ D(3,3), E(3,5) and F(2,4)  $$

    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y

    }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \dfrac { {

    x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{

    3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (3,3) $$ ; $$({ x

    }_{ 2 },{ y }_{ 2 }) = (3,5) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (2,4)$$

    in the area formula, we get

    Area of triangle DEF  $$ = \left| \dfrac { 3(5-4)+(3)(4-3)+2(3-5) }{ 2

    }  \right|  = \left| \dfrac { 3 +3 -4 }{ 2 }  \right|  =

    \dfrac {2}{2}  = 1 \ sq \ units $$
  • Question 10
    1 / -0
    Find the area of the triangle whose vertices are $$(a, b + c), (a, b - c)$$ and $$(-a, c)$$.
    Solution
    Area of a triangle $$ (A) =\left| \cfrac { {x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (a,b+c) $$ , $$({ x }_{ 2

    },{ y }_{ 2 }) = (a,b-c) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (-a,c) $$ 

    $$ A=\left| \cfrac { a(b-c-c)+a(c-b-c)-a(b+c-b+c) }{ 2 }  \right| $$
    $$=\left| \cfrac { a(b-2c)+a(-b)-a(2c) }{ 2 }  \right|$$
    $$ =\left| \cfrac { ab-2ac-ab-2ac }{ 2 }  \right| $$
    $$=\left| \cfrac { -4ac }{ 2 }  \right| $$
    $$=2ac$$  square units 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now