Self Studies

Sequences and Series Test 25

Result Self Studies

Sequences and Series Test 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$6, 10, 18, 34, 66$$
    The first number in the list above is $$6$$. Determine a rule for finding each successive number in the list.
    Solution
    The series is  $$6,10,18,34,66$$
    In the given series:
    $$6+6=12-2=10$$
    $$10+10=20-2=18$$
    $$18+18=36-2=34$$
    $$34+34=68-2=66$$
    Hence in this each successive number is obtained by double the preceding number and then subtract $$2$$ from the result. 
  • Question 2
    1 / -0
    $$m, 2m, 4m, . . . $$
    The first term in the sequence above is $$m$$, and each term thereafter is equal to twice the previous term. If $$m$$ is an integer, which of the following could NOT be the sum of the first four terms of this sequence?
    Solution
    The first term in given Geometric series, $$a_1=m$$
    The common ratio $$r$$ $$=\dfrac{4m}{2m}=2$$
    No. of terms, $$n$$ $$=4$$
    Applying sum of GP formula,
    $$S_n=\dfrac{a(1-r^n)}{1-r}$$
          $$=\dfrac{m(1-2^4)}{1-2}$$
          $$=\dfrac{m(1-16)}{-1}=15m$$   
    If $$m$$ is an integer the sum of the first four terms of this sequence should be in multiple of $$15$$.
    Hence, option A is correct which is not a multiple of $$15$$.
  • Question 3
    1 / -0
    For all numbers a and b, let $$\displaystyle a\bigodot b$$ be defined by $$\displaystyle a\bigodot b=ab+a+b$$. Then for the numbers $$x$$, $$y$$ and $$z$$, which of the following is/are true?
    I. $$\displaystyle x\bigodot y=y\bigodot x$$
    II. $$\displaystyle \left( x-1 \right) \bigodot \left( x+1 \right) =\left( x\bigodot x \right) -1$$
    III. $$\displaystyle x\bigodot \left( y+z \right) =\left( x\bigodot y \right) +\left( x\bigodot z \right) $$
    Solution
    $$For(I)$$
    $$x\odot y=y\odot x$$
    $$x\odot y=xy+x+y\Rightarrow x\odot y=y\odot x$$
    $$y\odot x=yx+y+x$$

    $$For(II)$$
    $$\left( x-1 \right) \odot \left( x+1 \right)$$ 
    $$=(x-1)(x+1)+x-1+x+1$$
    $$={ x }^{ 2 }-1+2x$$
    $$\left( x\odot x \right) -1=x\times x+x+x-1$$
    $${ x }^{ 2 }+2x-1$$
    $$\therefore \left( x-1 \right) \odot \left( x+1 \right) =\left( x\odot x \right) -1$$

    $$For(III)$$
    $$x\odot \left( y+z \right) $$
    $$=x\left( y+z \right) +x+y+z$$
    $$=xy+xz+x+y+z$$
    $$x\odot y=xy+x+y$$
    $$x\odot z=xz+x+z$$
    $$x\odot y+x\odot z=xy+xz+x+y+x+z$$
    $$=xy+xz+2x+y+z$$
    $$\Rightarrow x\odot \left( y+z \right) \neq x\odot y+x\odot z$$

    $$\therefore (I)\& (II)$$ are true.
  • Question 4
    1 / -0
    In the $$xy$$-plane, the vertices of a triangle are $$(-1,3), (6,3)$$ and $$(-1,-4)$$. The area of the triangle is ___ square units.
    Solution
    If $$(x_1,y_1)$$,$$(x_2,y_2)$$ and $$(x_3,y_3)$$ are the vertices of a triangle then its area is given by,
    $$A=\left| \dfrac { 1 }{ 2 } (x_{ 1 }(y_{ 2 }-y_{ 3 })+x_{ 2 }(y_{ 3 }-y_{ 1 })+x_{ 3 }(y_{ 1 }-y_{ 2 })) \right| $$
    Therefore, with the vertices $$(-1,3)$$, $$(6,3)$$ and $$(-1,-4)$$. 
    Area of triangle is given by,
    $$A=\left| \dfrac { 1 }{ 2 } (-1(3-(-4))+6(-4-3)+(-1)(3-3)) \right|$$
    $$ =\left| \dfrac { 1 }{ 2 } (-7-42) \right| $$
    $$=\left| \dfrac { 1 }{ 2 } (-49) \right| $$
    $$=\left| -24.5 \right|$$
    $$ =24.5$$ square units.
  • Question 5
    1 / -0
    If $$m * n = m+(m-1)+(m-2)+ ...... +(m-n)$$, evaluate $$7 * 5$$.
    Solution
    $$\Rightarrow$$  $$m * n=m+(m-1)+(m-2)+....+(m-n)$$
    $$\Rightarrow$$  In $$7 * 5$$, $$m=7$$ and $$n=5$$
    $$\Rightarrow$$  $$7 * 5=7+(7-1)+(7-2)+(7-3)+(7-4)+(7-5)$$
    $$\Rightarrow$$  $$7 * 5=7+6+5+4+3+2$$
    $$\therefore$$   $$7 * 5=27$$
  • Question 6
    1 / -0
    Let $$\boxed { n }$$ be defined as $$\frac{(n+2)!}{(n-1)!}$$, what is the value of $$\frac{\boxed{7}}{\boxed {3}}$$ ?
    Solution
    Given, box $$n$$ is equal to $$\dfrac{(n+2)!}{(n-1)!}=(n+2)(n+1)n$$
    We get box $$7$$ is equal to $$9 \times 8 \times 7 =504$$
    We get box $$3$$ is equal to $$5 \times 4 \times 3 = 60$$
    Therefore, If we divide those two, we get $$\dfrac{504}{60} = 8.4$$.
  • Question 7
    1 / -0
    If $$a\odot b = 6\times a - 3\times b$$, evaluate $$(5\odot 3) \odot 20$$
    Solution
    $$\Rightarrow$$  $$a\odot b=6\times a-3\times b$$         [ Given ]
    $$\Rightarrow$$  $$(5\odot 3)\odot 20$$
    $$\Rightarrow$$  Let $$a=5$$ and $$b=3$$
    $$\Rightarrow$$  $$(6\times 5-3\times 3)\odot 20$$
    $$\Rightarrow$$  $$(30-9)\odot 20$$
    $$\Rightarrow$$  $$21\odot 20$$
    $$\Rightarrow$$  Let $$a=21$$ and $$b=20$$
    $$\Rightarrow$$  $$6\times 21-3\times 20$$
    $$\Rightarrow$$  $$126-60$$
    $$\Rightarrow$$  $$66$$
    $$\therefore$$    $$(5\odot 3)\odot 20=66$$
  • Question 8
    1 / -0
    In fig., the area of triangle ABC (in sq. units) is:

    Solution
    Given: Coordinates of Point $$A (1,3) ,B (-1,0)$$ and $$C (4,0)$$
    Construction: Drop a perpendicular from $$A$$ on $$x-$$ axis, which meets x-axis at $$D\equiv(1,0)$$
    Now in $$\Delta ADC, AD = 3, DC = 3$$
    Area of $$\Delta ADC = \dfrac12\times DC\times AD$$
    $$= \dfrac12\times3\times3 = \dfrac92 \ cm^2$$

    Now in $$\Delta ADB, AD = 3, DB = 2$$
    Area of $$\Delta ADB = \dfrac12\times DB\times AD$$
    $$= \dfrac12\times2\times3 = 3 \ cm^2$$

    Area of $$\Delta ABC =$$ Ara of $$\Delta ADC + $$ Area of $$\Delta ABD$$
    $$ = \dfrac92 + 3 = \dfrac{15}2 = 7.5\ cm^2$$

  • Question 9
    1 / -0
    Area of the triangle formed by the points $$\left( 0,0 \right) ,\left( 2,0 \right) $$ and $$\left( 0,2 \right) $$ is 
    Solution
    Given: $$A=(x_1,y_1)=(0,0)$$

                $$B=(x_2,y_2)=(2,0)$$ and 

                $$C=(x_3,y_3)=(0,2)$$

    Area of triangle $$=\dfrac {1}{2}[x_1(y_2-y_3)+x_2(y_3-y_1)++x_3(y_1-y_2)]$$                                     
                               
                               $$=\dfrac {1}{2}[0(0-2)+2(2-0)+0(0-0)]$$

                               $$=\dfrac {1}{2}[2(2)]$$

                               $$=2$$ sq. units.
  • Question 10
    1 / -0
    Consider an incomplete pyramid of balls on a square base having $$18$$ layers; and having $$13$$ balls on each side of the top layer. Then the total number $$N$$ of balls in that pyramid satisfies
    Solution

    The top layer has $$(13\times 13)$$ balls the layer below it  will have $$(14\times 14)$$ balls

    We have $$18$$ layers

    So the total number of balls 

    $$N=(13\times 13)+(14\times 14)+.......(30\times 30)\\ N={ 13 }^{ 2 }+{ 14 }^{ 2 }+.....{ 30 }^{ 2 }$$

    Sum of squares of first $$n$$ natural numbers is $$\dfrac { n(n+1)(2n+1) }{ 6 } \\ $$

    $$\therefore N=$$ sum of first $$30$$ $$-$$ sum of first $$12$$

    $$N=\dfrac { 30\times 31\times 61 }{ 6 } -\dfrac { 12\times 13\times 25 }{ 6 } \\ N=8805\\ $$

    $$\Rightarrow 8000<N<9000$$

    Hence, option B is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now