Self Studies

Sequences and Series Test 43

Result Self Studies

Sequences and Series Test 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The sides of a quadrilateral are all positive integers and three of them are $$5, 10, 20.$$ How many possible value are there for the fourth side?
    Solution

  • Question 2
    1 / -0
    In a test there were n questions. In the test $$\displaystyle 2^{n-i}$$ students gave wrong answers to i questions where $$\displaystyle i=1,2,3...,n$$. If the total number of wrong answers given is 2047 then n is
    Solution
    Total number of wrong answers $$= 2^{n-1}+2^{n-2}+...+2^{2}+2+1$$
    $$=2^{n-1}+2^{n-2}+...+2^{4}+2^{3}+2^{2}+2+1$$
    $$\Rightarrow 2^{n}-1=2043$$  [Using formula for sum of G.P]
    $$ \Rightarrow 2^{n}=2048$$
    $$ \Rightarrow 2^{n}=2^{11}$$
    $$\Rightarrow n = 11$$
    Hence, option 'B' is correct.
  • Question 3
    1 / -0
    If $$^{19}C_r$$ and $$^{19}C_{r-1}$$ are in the ratio 2:3, then find $$^{14}C_r$$
    Solution
    We know that, $$ { { n }_{ C } }_{ r }=\dfrac { n! }{ r!(n-r)! } $$

    Given, $$ \dfrac { { { 19 }_{ C } }_{ r } }{ { { 19 }_{ C } }_{ r-1 } } =\quad \dfrac { 2 }{ 3 } $$

    $$ =>\dfrac { \dfrac { 19! }{ r!(19-r)! }  }{ \dfrac { 19! }{ (r-1)!(19-r+1)! }  } =\quad \dfrac { 2 }{ 3 } $$

    $$ => \dfrac { (r-1)!(20-r)! }{ r!(19-r)! } =\quad \dfrac { 2 }{ 3 } $$

    $$ =\dfrac { (r-1)!\times (20-r) \times (19-r)! }{ r\quad \times (r-1)!\times (19-r)! } =\quad \dfrac { 2 }{ 3 } $$
    $$ => \dfrac { 20-r }{ r\quad  } =\quad \dfrac { 2 }{ 3 } $$
    $$ => r = 12 $$

    So,
    $$ { { 14 }_{ C } }_{ 12 }=\dfrac { 14! }{ 12!(14-12)! } =\dfrac { 14! }{ 12!(2)! } =\dfrac { 14\times 13\times 12! }{ 12!\times 2 } =\quad 7\times 13=91 $$
  • Question 4
    1 / -0
    If $$^nC_3=^nC_{13}$$, then $$^{20}C_n$$ is.
    Solution
    We know that $$ { { n }_{ C } }_{ r }=  { { n }_{ C } }_{n- r }$$

    Given, $$ { { n }_{ C } }_{3}= { { n }_{ C } }_{13} $$
    $$ => r = 3 $$ and $$ n -r = 13 $$
    $$ => n - 3 = 13 $$
    $$ => n = 16 $$

    Also, $$ { { n }_{ C } }_{ r }=\dfrac { n! }{ r!(n-r)! }  $$
    So, $$ { { 20 }_{ C } }_{ 16 }=\dfrac { 20! }{ 16!(20-16)! } = \dfrac { 20! }{ 16! \times 4! }  = \dfrac { 20 \times 19 \times 18 \times 17 \times 16! }{ 16! \times 4 \times 3 \times 2 } = 4845   $$
  • Question 5
    1 / -0
    If the difference of the number of arrangements of three things from a certain number of dissimilar things and the number of selections of the same number of things from them exceeds $$ 100$$, then the least number of dissimilar things is
    Solution
    Here,
    $$^nP_3-^nC_3 > 100$$

    or $$\dfrac {n!}{(n-3)!}-\dfrac {n!}{3!(n-3)!} > 100$$

    or $$\dfrac {5}{6}n(n-1)(n-2) > 100$$

    or $$n(n-1)(n-2) > 100$$

    or $$n(n-1)(n-2) > 6\times 5\times 4$$

    or $$n=7, 8, .....$$
  • Question 6
    1 / -0

    Directions For Questions

    The area of a triangle whose vertices are $$\displaystyle \left( { x }_{ 1 },{ y }_{ 1 } \right) ,\left( { x }_{ 2 },{ y }_{ 2 } \right) $$ and $$\displaystyle \left( { x }_{ 3 },{ y }_{ 3 } \right) $$ is given by $$\displaystyle \Delta =\frac { 1 }{ 2 } \left| { x }_{ 1 }\left( { y }_{ 2 },{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 },{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 },{ y }_{ 2 } \right)  \right| $$. The points $$\displaystyle \left( { x }_{ 1 },{ y }_{ 1 } \right) ,\left( { x }_{ 2 },{ y }_{ 2 } \right) $$ and $$\displaystyle \left( { x }_{ 3 },{ y }_{ 3 } \right) $$ are collinear of $$\displaystyle \Delta =0$$

    ...view full instructions

    Determine the area of the triangle whose vertices are $$\displaystyle \left( \frac { 1 }{ 2 } ,\frac { -1 }{ 2 }  \right) ,\left( 2,\frac { -1 }{ 2 }  \right) $$ and $$\displaystyle \left( 2,\frac { \sqrt { 3 } -1 }{ 2 }  \right) $$.
    Solution

  • Question 7
    1 / -0
    A college offers $$7$$ courses in the morning and $$5$$ courses in the evening. Find the number of ways a student can select exactly one course either in the morning or in the evening.
    Solution
    $$7$$ Courses in morning 
    $$5$$ courses in evening 
    Total number of courses $$=12$$
    Selecting any one of the course 
    Number of ways $$^{ 12 }{ C }_{ 1 }$$
    $$=\cfrac { 12! }{ 1!\times 1! } $$ 
    $$=12$$ Ways 
    Therefore total ways $$=12$$
  • Question 8
    1 / -0
    If $$m$$ denotes the number of $$5$$ digit numbers if each successive digits are in their descending order of magnitude and $$n$$ is the corresponding figure. When the digits and in their ascending order of magnitude then $$(m-n)$$ has the value
    Solution

    $$  {\textbf{Step 1: Find m}} $$

                    $$  {\text{For m,}} $$

                    $$  {\text{First we select any 5 digits from 0,1,2,}}...{\text{,9}} $$

                    $$  {\text{Number of ways = }}{}^{10}{{\text{C}}_5} $$

                    $$  {\text{Now after selection there is only 1 way to arrange these selected digits, i}}{\text{.e}}{\text{., in descending order}}{\text{.}} $$

                    $$  {\text{Therefore m = }}{}^{10}{{\text{C}}_5}\times{\text{  1 = }}{}^{10}{{\text{C}}_5} $$

    $$  {\textbf{Step 2: Find n}} $$

                    $$  {\text{For n,First we select any 5 digits from 1,2,}}...{\text{,9}} $$

                    $$  {\text{We can't select zero as  first digit because then the number won't be a 5 - digit number}}{\text{.}} $$

                    $$  {\text{Therefore number of ways  = }}{}^9{{\text{C}}_5} $$

                    $$   \Rightarrow {\text{n = }}{}^9{{\text{C}}_5}\times{\text{  1 = }}{}^9{{\text{C}}_5} $$

                    $$   \Rightarrow {\text{m - n = }}{}^{10}{{\text{C}}_5}{\text{ - }}{}^9{{\text{C}}_5} $$ 

                    $$  {\text{We know that,}}{}^n{{\text{C}}_r}{\text{ + }}{}^n{{\text{C}}_{r - 1}}{\text{ = }}{}^{n + 1}{{\text{C}}_r} $$

                    $$   \Rightarrow {}^{n + 1}{{\text{C}}_r}{\text{ - }}{}^n{{\text{C}}_r}{\text{ = }}{}^n{{\text{C}}_{r - 1}} $$

                    $$   \Rightarrow {}^{10}{{\text{C}}_5}{\text{ - }}{}^9{{\text{C}}_5}{\text{ = }}{}^9{{\text{C}}_4} $$

                    $$  {\text{Hence, m - n = }}{}^9{{\text{C}}_4} $$

    $$  {\textbf{Hence, the correct answer is option A}} $$

     

  • Question 9
    1 / -0
    There are $$2$$ identical white balls, $$3$$ identical red balls and $$4$$ green balls of different shades. The number of ways in which they can be arranged in a row so that atleast one ball is separated from the balls of the same colour, is
    Solution
    These are totally $$9$$ balls of which $$2$$ are identical of one kind, $$3$$ are a like of another kind $$and$$ $$4$$ district ones.

    At least one ball of same color separated $$=$$ Total $$-$$ No ball of same color is separated
    Total permutation $$=\dfrac{9!}{2!3!}$$

    For no ball is separated : we consider all balls of same color as $$1$$ entity, so there are $$3$$ entities which can be placed in $$3!$$ ways.

    The white and red balls are identical so they will be placed in $$1$$ way whereas green balls are different so they can be placed in $$4!$$ ways
    $$\Rightarrow Req=3!\times 4!$$

    At least one ball is separated $$=\dfrac{9!}{2!3!}-3!4!$$

                                                      $$=\dfrac{9\times 8\times 7!}{2\times 6}-6\times 4!$$
                                                    
                                                      $$=6\left(7!\right)-6\left(\times 4!\right) $$

                                                      $$=6\left( 7!-4!\right ).$$

    Hence, the answer is $$6\left( 7!-4!\right ).$$
  • Question 10
    1 / -0
    If j, k, and n are consecutive integers such that $$0 < j < k < n$$ and the units (ones) digit of the product jn is 9, what is the units digit of k ? 
    Solution

    There are only a few ways you can make a product have a units digit of $$9$$. Either both numbers you’re multiplying have to be $$3$$, or one has to be $$1$$ and one has to be $$9$$. Since we’re dealing with consecutive integers, $$j$$ and $$n$$ can’t both end in $$3$$, so they’re going to have to end in $$1$$ and $$9$$. 

    It’s important to remember that although we only really care about the units digits in this problem, we’re dealing with numbers that might (or in fact, must) be $$2$$ or more digits. That’s why you can have $$k's$$ units digit be $$0$$. 

    Say $$j= 19$$, $$k= 20$$, and $$n= 21$$. Then $$jn = (19)(21) = 399$$ (units digit is $$9$$), and the units digit of $$k = 0$$.

    Hence option A is correct. 

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now