From the figure, it is clear that the centre of the circle will lie on either $$x$$ or $$y$$ axis.
Let us take the case when the centre lies on $$x$$ axis and let it be $$B(h,0)$$
Given $$OA=a$$
$$\Rightarrow OC=BC=\dfrac{a}{2}$$
Now in $$\triangle OBC$$ $$,$$ $${ OB }^{ 2 }={ OC }^{ 2 }+{ BC }^{ 2 }$$
$$\Rightarrow { OB }^{ 2 }={ \left( \dfrac { a }{ 2 } \right) }^{ 2 }+{ \left( \dfrac { a }{ 2 } \right) }^{ 2 }$$
$$ \Rightarrow { h }^{ 2 }=\dfrac { { a }^{ 2 } }{ 2 } $$
$$ \Rightarrow h=\pm \dfrac { a }{ \sqrt { 2 } } $$
So the centre of the circle is $$\left( \pm \dfrac { a }{ \sqrt { 2 } } ,0 \right) $$ and radius is $$\dfrac { a }{ \sqrt { 2 } } $$ and its equation is
$${ \left( x\pm \dfrac { a }{ \sqrt { 2 } } \right) }^{ 2 }+{ (y-0) }^{ 2 }={ \left( \dfrac { a }{ \sqrt { 2 } } \right) }^{ 2 }$$
$$ { x }^{ 2 }+\dfrac { { a }^{ 2 } }{ 2 } \pm \sqrt { 2 } ax+{ y }^{ 2 }=\dfrac { { a }^{ 2 } }{ 2 } $$
$$ { x }^{ 2 }\pm \sqrt { 2 } ax+{ y }^{ 2 }=0$$
Similarly when centre lies on $$y$$ axis centre will be $$\left( 0,\pm \dfrac { a }{ \sqrt { 2 } } \right) $$ and radius $$\dfrac { a }{ \sqrt { 2 } } $$ and its equation will be
$${ x }^{ 2 }\pm \sqrt { 2 } ay+{ y }^{ 2 }=0$$