Self Studies
Selfstudy
Selfstudy

Circles Test 11

Result Self Studies

Circles Test 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What is the radius of the circle passing through the point $$(2, 4)$$ and having centre at the intersection of the lines $$x - y = 4$$ and $$2x + 3y + 7 = 0$$?
    Solution
    The line $$x-y=4$$ and $$2x+3y+7=0$$ intersect at the point $$(1,-3)$$
    So, the centre of circle lies at $$(1,-3)$$

    Point $$(2,4)$$ lies on the circle.
    So, radius = distance of $$(2,4)$$ from $$(1,-3)$$
    $$=\sqrt{(2-1)^2+(4-(-3)^2}$$
    $$=\sqrt{1^2+7^2}$$
    $$=\sqrt{50}$$
    $$=5\sqrt2$$ units

    So, the answer is option (D)
  • Question 2
    1 / -0
    Equation of circle with center (-a, -b) and radius $$\sqrt{a^2-b^2}$$ is.
    Solution
    Fact: equation of circle with centre $$(h,k)$$ and radius $$r$$ is given by 

    $$(x-h)^2+(y-k)^2=r^2$$

    Hence equation of circle with centre $$(-a,-b)$$ having radius $$\sqrt{a^2-b^2}$$ is given by,

    $$(x+a)^2+(y+b)^2=a^2-b^2$$

    $$\Rightarrow x^2+y^2+2ax+2by+a^2+b^2=a^2-b^2$$


    $$\Rightarrow x^2+y^2+2ax+2by+2b^2=0$$

  • Question 3
    1 / -0
    Which ordered number pair represents the center of the circle $$x^2 + y^2 - 6x + 4y - 12 = 0$$?
    Solution
    The equation of circle is $$x^{ 2 }+y^{ 2 }-6x+4y-12=0$$
    $$\Rightarrow x^2-6x+9+y^2+4y+4=12+13$$
    $$\Rightarrow (x-3)^{ 2 }+(y+2)^{ 2 }=25$$
    Comparing above equation with $$(x-h)^2+(y-k)^2=r^2$$
    Therefore, we get the center of circle as $$(3,-2)$$.
  • Question 4
    1 / -0
    What is the approximate radius of the circle whose equation is $$(x-\sqrt{3})^2+(y+2)^2=11$$?
    Solution
    • The radius of given circle is $$\sqrt{11} = 3.32$$
  • Question 5
    1 / -0
    The lines $$3x+  4y + l = 0$$ and $$6x +8y + m = 0$$ are tangents to the same circle. The radius of the circle is
    Solution
    $$3x+4y+l=0\\ |OP|=\cfrac { -3g-4f+l }{ \sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } }  } \\ =\cfrac { -3g-4f+l }{ 5 } \\ |OD|=\cfrac { -6g-8f+m }{ 10 } \\ |OP|=|OD|\\ \cfrac { -3g-4f+l }{ 5 } =\cfrac { -6g-8f+m }{ 10 } \\ -6g-8f+2l=-6g-8f+m\\ 2l-m\\ 2l=m\\ 3a+4y=-l\times 2\\ 6x+8y=-2l\times 1\\ 6x+8y=-2l\\ 6x+8y=-2l$$

  • Question 6
    1 / -0
    The line $$(x-2)\cos \theta +(y-2)\sin \theta =1$$ touches a circle for all value of $$\theta$$, then the equation of circle is
    Solution
    Given line is
    $$(x-2)cos \,\theta +(y-2)sin\, \theta =1$$
    $$\Rightarrow (x-2)cos \theta +(y-2)sin\theta=cos^2 \, \theta+sin^2\, \theta$$
    On compaining we get,
    $$(x-2) = cos\theta $$ ..... $$(i)$$
    $$(y-2) = sin \theta$$ ..... $$(ii)$$
    On squaring and then adding Eqs. $$(i)$$ and $$(ii),$$ we get
    $$(x-2)^2+(y-2)^2=cos^2\theta +sin^2 \theta$$
    $$\Rightarrow (x-2)^2+(y-2)^2=1$$
    $$\Rightarrow x^2+y^2-4x-4y+7=0$$
  • Question 7
    1 / -0
    The equation of the smallest circle passing through the points $$(2, 2)$$ and $$(3, 3)$$ is
    Solution
    If the smallest circle is drawn through the points $$(2,2)$$ and $$(3,3)$$ then, the point have to be the opposite end of the diameter of the circle.
    Therefore, the centre of the circle is $$C=(\dfrac{5}{2},\dfrac{5}{2})$$.
    The radius of the circle is $$R=\dfrac{\sqrt{2}}{2}$$ ....(using distance formula)
    Hence equation of the circle is
    $$(x-\dfrac{5}{2})^{2}+(y-\dfrac{5}{2})^{2}=\dfrac{1}{2}$$
    $$x^{2}+y^{2}-5x-5y+\dfrac{50}{4}=\dfrac{1}{2}$$
    Or
    $$x^{2}+y^{2}-5x-5y+\dfrac{25}{2}-\dfrac{1}{2}=0$$
    Or
    $$x^{2}+y^{2}-5x-5y+12=0$$.
  • Question 8
    1 / -0
    Find the equation to the circles which pass through the origin and cut off equal chords $$a$$ from the straight lines $$y = x$$ and $$y = -x$$.
    Solution

    From the figure, it is clear that the centre of the circle will lie on either $$x$$ or $$y$$ axis.

    Let us take the case when the centre lies on $$x$$ axis and let it be $$B(h,0)$$

    Given $$OA=a$$

    $$\Rightarrow OC=BC=\dfrac{a}{2}$$

    Now in $$\triangle OBC$$ $$,$$ $${ OB }^{ 2 }={ OC }^{ 2 }+{ BC }^{ 2 }$$

    $$\Rightarrow { OB }^{ 2 }={ \left( \dfrac { a }{ 2 }  \right)  }^{ 2 }+{ \left( \dfrac { a }{ 2 }  \right)  }^{ 2 }$$

    $$ \Rightarrow { h }^{ 2 }=\dfrac { { a }^{ 2 } }{ 2 } $$

    $$ \Rightarrow h=\pm \dfrac { a }{ \sqrt { 2 }  } $$

    So the centre of the circle is $$\left( \pm \dfrac { a }{ \sqrt { 2 }  } ,0 \right) $$ and radius is $$\dfrac { a }{ \sqrt { 2 }  } $$ and its equation is 

    $${ \left( x\pm \dfrac { a }{ \sqrt { 2 }  }  \right)  }^{ 2 }+{ (y-0) }^{ 2 }={ \left( \dfrac { a }{ \sqrt { 2 }  }  \right)  }^{ 2 }$$

    $$ { x }^{ 2 }+\dfrac { { a }^{ 2 } }{ 2 } \pm \sqrt { 2 } ax+{ y }^{ 2 }=\dfrac { { a }^{ 2 } }{ 2 } $$

    $$ { x }^{ 2 }\pm \sqrt { 2 } ax+{ y }^{ 2 }=0$$

    Similarly when centre lies on $$y$$ axis centre will be $$\left( 0,\pm \dfrac { a }{ \sqrt { 2 }  }  \right) $$ and radius $$\dfrac { a }{ \sqrt { 2 }  } $$ and its equation will be

    $${ x }^{ 2 }\pm \sqrt { 2 } ay+{ y }^{ 2 }=0$$

  • Question 9
    1 / -0
    Find the equation to the circle which touches the axis of $$y$$ at the origin and passes through the point $$(b, c)$$.
    Solution
    Equation of circle which touches the $$y$$-axis at origin is 
    $$x^2+y^2+2gx+d=0$$
    Since the circle passes through origin, $$d=0$$
    Thus the equation becomes,
    $$x^2+y^2+2gx=0$$    ..........(1)
    The equation passes through $$(b,c)$$, so
    $$b^2+c^2+2gb=0$$
    Therefore, $$g=\dfrac{-b^2-c^2}{2b}$$
    So, putting the value of $$g$$ in (1), we get
    $$bx^2+by^2-(b^2+c^2)x=0$$
  • Question 10
    1 / -0
    The line segment joining the foci of the hyperbola $$x^{2} - y^{2} + 1 = 0$$ is one of the diameters of a circle. The equation of the circle is :
    Solution
    $$x^{2} - y^{2} + 1 = 0\implies (x-0)^{2}+(y-0)^{2}=0$$ 
    Foci of the given hyperbola $$= (0, \pm \sqrt {2})$$ 
    Centre of the hyperbola is $$(0,0)$$
    Diameter of the circle is the distance between foci of the hyperbola and which is given by
    $$D=\sqrt{(0-0)^{2}+(\sqrt{2}+\sqrt{2})^{2}}=2\sqrt{2}$$
    Centre of the circle will be same as that of the hyperbola
    $$\therefore Centre = (0, 0)$$ and $$Radius = \sqrt {2}$$
    $$\therefore$$ Equation of the circle is $$x^{2} + y^{2} = 2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now