Self Studies
Selfstudy
Selfstudy

Circles Test 15

Result Self Studies

Circles Test 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The radius of the circle $$x^2+y^2-5x+2y+5=0$$ is
    Solution
    Given the equation of the circle is $$x^2+y^2-5x+2y+5=0$$ can be written as
    or $$x^2+2.\dfrac{5}{2}x+\dfrac{25}{4}+y^2+2.y.1+1+5-1-\dfrac{25}{4}=0$$
    or $$\left(x+\dfrac{5}{2}\right)^2+(y+1)^2+4-\dfrac{25}{4}=0$$
    or $$\left(x+\dfrac{5}{2}\right)^2+(y+1)^2=\dfrac{9}{4}$$
    or $$\left(x+\dfrac{5}{2}\right)^2+(y+1)^2=\left(\dfrac{3}{2}\right)^2$$.
    From this equation it is clear that the centre of the circle is $$\left(-\dfrac{5}{2},-1\right)$$ and radius is $$\dfrac{3}{2}$$.
  • Question 2
    1 / -0
    The equation of the circle passing through $$(3,6)$$ and whose centre is $$(2,-1)$$ is 
    Solution

    $$\textbf{Step-1: Finding radius(r)}$$

                   $$\text{ We can find radius by calculating distance between centre and circumference point from distance formula}$$

                   $$\text{ Distance between two points $$(x1,y1) , (x2,y2)}$$

                    $$\text{Is given as D}$$ =  $$\sqrt {{{(x_1 - x_2)}^{^2}} + {{(y_1 - y_2)}^2}} $$, Here x1 = 2, x2 = 3, y1 = -1, y2 = 0

                    $$\text{So r comes out to}$$

                    be r =$$\sqrt{2}$$

    $$\textbf{Step-2: Required equation of circle is given by}$$ $${(x - x_1)^2} + {(y - y_!)^2} = {r^2}$$

                     $${(x - 2)^2} + {(y - 3)^2} = {(\sqrt 2 )^2}$$

                     $${x^2} + {y^2} - 4x + 2y + 3 = 0$$

    $$\textbf{Hence the required equation of crcle is}$$  $${x^2} + {y^2} - 4x + 2y + 3 = 0$$

  • Question 3
    1 / -0
    Cantres of the three circles
    $$x^{2}+y^{2}-4x-6y-14=0$$
    $$x^{2}+y^{2}+2x+4y-5=0$$
    and $$x^{2}+y^{2}-10x-16y+7=0$$
    Solution
    Centre of $$x^2+y^2-4x-6y-14=0\space  is\space (-2,-3)$$
    Centre of $$x^2+y^2+2x+4y-5=0\space  is\space (1,2)$$
    Centre of $$x^2+y^2-10x-16y+7=0\space  is\space (-5,-8)$$

    Let these centres be $$A(-2,-3);B(1,2);C=(-5,-8)$$

    Now we find the lengths of $$AB, BC, CA$$

    $$\Rightarrow AB=\sqrt{(-2-1)^2+(-3-2)^2}=\sqrt {34}$$

    $$\Rightarrow BC=\sqrt{(-5-1)^2+(-8-2)^2}=\sqrt {136}$$

    $$\Rightarrow CA=\sqrt{(-2+5)^2+(-3+8)^2}=\sqrt {34}$$

    Here we can see that $$AB+CA=BC$$

    Therefore $$ ABC $$ is a straight line.
  • Question 4
    1 / -0
    The centre of the circle $$(x-a)(x-b)+(y-c)(y-c)=0$$ is 
    Solution
    Given the equation of the circle is 
    $$(x-a)(x-b)+(y-c)(y-c)=0$$ 
    or, $$x^2-x(a+b)+ab+y^2-x(c+c)+cd=0$$
    or, $$x^2-2.x.\dfrac{a+b}{2}+\dfrac{(a+b)^2}{4}+y^2-2.y.\dfrac{c+d}{2}+\dfrac{(c+d)^2}{4}=\dfrac{(a+b)^2}{4}-ab+\dfrac{(c+d)^2}{4}-cd$$
    or, $$\left(x-\dfrac{a+b}{2}\right)^2+\left(y-\dfrac{c+d}{2}\right)^2=\dfrac{(a-b)^2}{4}+\dfrac{(c-d)^2}{4}$$.
    From this equation it is clear that the centre is $$\left(\dfrac{a+b}{2},\dfrac{c+d}{2}\right)$$.
  • Question 5
    1 / -0
    If a be the radius of a circle which touches x-axis at the origin, then its equation is

    Solution
    The equation of the circle  with centre at $$\left(h,k\right)$$ and radius equal to $$a$$ is $${\left(x-h\right)}^{2}+{\left(y-k\right)}^{2}={a}^{2}$$
    When the circle passes through the origin  and centre lies on $$x-$$ axis 
    $$\Rightarrow h=a$$ and $$k=0$$
    Then the equation $${\left(x-h\right)}^{2}+{\left(y-k\right)}^{2}={a}^{2}$$ becomes $${\left(x-a\right)}^{2}+{y}^{2}={a}^{2}$$
    If a circle passes through the origin and centre lies on $$x-$$axis then the abscissa will be equal to the radius of the circle and the $$y-$$co-ordinate of the centre will be zero Hence, the equation of the circle will be of the form 
    $${\left(x\pm a\right)}^{2}+{y}^{2}={a}^{2}$$
    $$\Rightarrow {x}^{2}+{a}^{2}\pm 2ax+{y}^{2}={a}^{2}={x}^{2}+{y}^{2}\pm 2ax=0$$ is the required equation of the circle.

  • Question 6
    1 / -0
    Equation of the circle with centre on the $$y-$$axis and passing through the origin and the point $$(2,3)$$ is
    Solution
    We have to find equation of a circle with center on the y-axis.
    General equation of such circle is
    $$(x-0)^{2}+(y-k)^{2}=k^{2}$$
    It passes through $$(2,3)$$
    i.e, $$2^{2}+(3-k)^{2}=k^{2}$$
    $$\Rightarrow 4+9+k^{2}-6k=k^{2}$$
    $$\Rightarrow k=\dfrac{13}{6}$$
    $$\therefore $$ Equation of circle $$=x^{2}+\left(y-\dfrac{13}{6}\right)^{2}=\left(\dfrac{13}{6}\right)^{2}$$
    $$=6x^{2}+6y^{2}-13y=0$$
  • Question 7
    1 / -0
    The graph of curve 
    $${x^2} + {y^2} - 8x - 8y + 32 = 0$$ falls wholly in the
    Solution
    $${x}^{2}+{y}^{2}−2xy−8x−8y+32=0$$
    $$\Rightarrow\,{x}^{2}+{y}^{2}−2xy=8x+8y-32$$
    $$\Rightarrow {\left(x-y\right)}^{2}= 8\left(x + y - 4\right)$$
    is a parabola whose axis is $$x - y = 0$$ and the tangent at the vertex is $$x + y - 4 = 0$$
    Also, when $$y = 0$$, we have
    $$x^2 - 8x + 32 = 0$$ which gives no real values of $$x$$
    when$$ x = 0$$, we have $$y^2 - 8y + 32 = 0$$  which gives no real values of $$y$$.
    So, the parabola does not intersect the axes. Hence, the graph falls in the first quadrant.
  • Question 8
    1 / -0
    $$(a, c)$$ and $$(b, c)$$ are the centres of two circles whose radical axis is the y-axis. If the radius of first circle is $$r$$ then the diameter of the other circle is 
    Solution
    Let radius of after circle be $$R$$
    $$C_1:(x-a)^2+(y-c)^2=r^2$$
    $$C_2:(x-b)^2+(y-c)^2=R^2$$
    Radius axis $$\to x=0$$ OR $$c_1-c_2=0$$
    $$c_1-c_2=x$$
    $$2bx-2ax-r^2+R^2+a^2-b^2=x$$
    Put $$x=0$$
    $$R^2=r^2+b^2-a^2$$
    $$R=\sqrt {r^2+b^2-a^2}$$
    Diameter $$=2\sqrt {r^2 +b^2 -a^2}$$
    $$D$$ is correct
  • Question 9
    1 / -0
    If $$(4,3)$$ and $$(-12,-1)$$ are end points of a diameter of a circle, then the equation of the circle is-
    Solution
    End points of diameter are $$(4,3)$$ and $$(-12,-1)$$
    $$\therefore $$ Center of circle$$=\left( \cfrac { 4-12 }{ 2 } ,\cfrac { 3-1 }{ 2 }  \right) $$
    $$=(-4,1)$$
    Radius$$=\cfrac { 1 }{ 2 } \sqrt { { \left( 4+12 \right)  }^{ 2 }+{ \left( 3+1 \right)  }^{ 2 } } $$
    $$=\sqrt { 68 } $$
    $$\therefore $$ Equation of circle is $${ \left( x+4 \right)  }^{ 2 }+{ \left( y-1 \right)  }^{ 2 }={ \left( \sqrt { 68 }  \right)  }^{ 2 }$$
    $${ x }^{ 2 }+8x+16+{ y }^{ 2 }-2y+1=68$$
    $${ x }^{ 2 }+{ y }^{ 2 }+8x-2y-51=0$$
  • Question 10
    1 / -0
    if the lines $$ 3x-4y-7=0$$ and $$2x-3y-5=0$$ are two diameter of a circle of area $$49\pi$$ square units the equation of the circle is
    Solution

    Given that,

    Equations of diameter  $$3x-4y-7=0$$ ……  (1) and $$2x-3y-5=0$$……   (2)

    Solve equations are

    $$3x-4y-7=0$$     $$×2$$

    $$2x-3y-5=0$$   $$×3$$

    $$ 6x-8y-14=0 $$

    $$ \underline{6x-9y-15=0}\,\,\,\,\,\,\,\,on\,\,subtracting\,\,\,that $$

    $$ y+1=0 $$

    $$ y=-1 $$

    Put the value of in equation (1)

    $$3x-4y-7=0$$ 

    $$ 3x-4\left( -1 \right)-7=0 $$

    $$ 3x+4-7=0 $$

    $$ 3x-3=0 $$

    $$ x=1 $$

    Hence , the coordinates of the centre is $$(1,-1)$$

    Also given area of circle= $$49\pi$$

    $$ \pi {{r}^{2}}=49\pi  $$

    $$ {{r}^{2}}=49 $$

    $$ r=7 $$

    Then, we know that the equation of circle is

    $$ {{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}} $$

    $$ {{\left( x-1 \right)}^{2}}+{{\left( y+1 \right)}^{2}}={{7}^{2}} $$

    $$ {{x}^{2}}+1-2x+{{y}^{2}}+1+2y=49 $$

    $$ {{x}^{2}}+{{y}^{2}}-2x+2y+2=49 $$

    $$ {{x}^{2}}+{{y}^{2}}-2x+2y=49-2 $$

    $$ {{x}^{2}}+{{y}^{2}}-2x+2y=47 $$

    $$ {{x}^{2}}+{{y}^{2}}-2x+2y-47=0 $$

    Hence, it is complete solution.

    Option $$(C)$$ is correct answer.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now