Self Studies
Selfstudy
Selfstudy

Circles Test 16

Result Self Studies

Circles Test 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The name of the conic represented by $$\sqrt{\dfrac{x}{a}}+\sqrt{\dfrac{y}{b}}=1$$ is
    Solution
    $$\sqrt{x/a}+\sqrt{y/b}=1$$

    rearranging : $$\sqrt {y/b}=1-\sqrt{x/a}$$

    squaring $$y/b=1+x/a-2\sqrt{x/a}$$

    $$\Rightarrow 2\sqrt{x/a}=1+x/a-y/b$$

    squaring again

    $$4x/a=1+x^2/a^2+y^2/b^2+2x/a-\dfrac{2xy}{ab}-\dfrac{2y}{b}$$

    Generally, when there is an equation of the form $$Ax^2+Bxy+Cy^2+Dx+Ey+F=0$$, if $$B^2-4AC=0$$, then the centre is one of the following:
    (1) A parabola
    (2) $$2$$ parallel lines ( certainly this is not the case)
    (3) $$1$$ line ( certainly this is not the case)
    (4) No curve ( again not the case).

    $$\therefore \sqrt{x/a}+\sqrt{y/b}=1$$ is a part of a parabola
  • Question 2
    1 / -0
    Equation of circle having centre $$(5, 2)$$ and which passes through the point $$(1, -1)$$ is?
    Solution

  • Question 3
    1 / -0
    Equation of the circle with radius 3 and centre as the point of intersection of the lines $$2x + 3y = 5, 2x - y = 1$$ is 
    Solution
    radius $$= 3$$,   $$2x+3y=5,2x-y=1$$

    $$2x+3y=5$$
    $$2x-y=1$$
    ___________
    $$4y=4 \Rightarrow y=1$$     $$2x=2\Rightarrow x=1$$

    Center of circle $$= (1,1)$$

    $$\Rightarrow (x-1)^{2}+(y-1)^{2}=9$$

    $$\Rightarrow x^{2}+1-2x+y^{2}+1-2y=9$$

    $$\Rightarrow x^{2}+y^{2}-2x-2y-7=0$$
  • Question 4
    1 / -0
    A square is inscribed in the circle $$x^2 +y^2 - 4x - 6y-5 =0$$ whose sides are parallel to co-ordinate axes then vertices of square are 
    Solution
    $$x^2+y^2-4x-6y-5=0$$
    $$(x-2)^2-4+(y-3)^2-9-5=0$$
    $$(x-2)^2+(y-3)^2=18$$
    centre $$(2,+3)$$ radius $$=\sqrt{18}=3\sqrt{2}$$
    If a square is inscribe in circle,
    $$\Rightarrow$$ diagonal of square =diameter
    $$\sqrt{2}a=2(radius)$$
          $$2=2\times 3\sqrt{2}$$
    $$\Rightarrow a=6$$
    $$\therefore$$ Side of the square is $$6$$
    Since the side are parallel to $$x$$ and $$y$$
    the vertices one equidistant from the centre.
    $$(2+3,+3+3),(2-3,+3+3), (2-3,+3-3)$$ and $$(2+3,+3-3)$$
    $$\Rightarrow (5,6), (-1,6), (-1,0),(5,0)$$
  • Question 5
    1 / -0
    If the lines $$3x-4y-7=0$$ and $$2x-3y-5=0$$ are two diameters of a circle of area 154 square units , the equation of the circle is :

    Solution
    Let us find intersection of $$3x-4y-7=0$$
    $$2x-3y-5=0$$
    $$\dfrac {8y+14}{3}-3y-5=0$$
    $$-9y+8y-15+19=0$$
    $$y=-1$$
    $$x=1$$
    Area $$=l\ \pi \ r^2=154$$
    $$\dfrac {22}{7}r^2 =154$$
    $$r^2 =49$$
    $$r=7$$ units
    Circle: $$(x-1)^2 +(y+1)^2 =49$$
    $$x^2 +y^2-2x+2y-47=0$$
    $$C$$ is correct.
  • Question 6
    1 / -0
    The lines $$2x - 3y = 5$$ and $$3x - 4y = 7$$ are two diameters of a circel of area $$154sq.$$ units. Then the equation of circle is
    Solution
    Circle area $$=\pi r^{2}=154\Rightarrow r=7\ sq.units$$

    intersection of diameter 
    $$(2x-3y=5)\times 3\\ (3x-4y=7)\times 2\\ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \\ \quad \quad -y=1\Rightarrow y=-1$$

    $$2x=5-3=2\Rightarrow x=1$$

    eqn of circle $$\Rightarrow (x-1)^{2}+(y+1)^{2}=49$$
  • Question 7
    1 / -0
    The circles $${x}^{2}+{y}^{2}-4x+4y+4=0$$ and $${x}^{2}+{y}^{2}-4x-4y=0$$
    Solution
    $$ S_1 = x^{2}+y^{2}+4y-4x+4 = 0 $$
    $$ S_2 = x^2+y^2-4x-4y = 0 $$
    $$ S_1 -S_2 = (x^2+y^2-4x+4y+4)-(x^2+y^2-4x-4y)$$
    $$ = x^2+y^2-4x+4y-4-x^2-y^2+4x+4y$$
    $$ = 8y-4 $$
    $$ \Rightarrow 8y-4 = 0 \Rightarrow y = 1/2$$
    from $$ S_1 = x^2+y^2+4y-4x+4 = 0 $$
    $$ C_1$$ centre (2,-2) 
    $$ R_1 $$ Radius = $$ \sqrt{4+4-4} = 2 $$
    similarly $$ S_2 = X^2+y^2-4x-4y = 0 $$
    $$ C_2 $$ centre (2,2)
    $$ R_2 $$ Radius $$= \sqrt{4+4} = \sqrt{8} = 2\sqrt{2}$$
    Distance between centre of circles,
    $$ \left | C_1 C_2 \right | = \sqrt{(2-2)^2+(2+2)^2 } = \sqrt{0+4^2} = \sqrt{4^2} = 4 $$
    Now $$ R_1+R_2 = 2+2\sqrt{2} = 2 (1+\sqrt{2}) \neq \left | C_1 C_2\right |$$
    $$ R_1 +R_2> $$
    The condition for orthogonality $$ = 2gg'+2ff' = c+c'$$
    $$ \Rightarrow 2(2)(2)+2(-2)(2) = 4+0 $$
    $$ 8-8 = 0\neq  4 $$
    So, no circles do not intersect orthogonality,
    Option (b) is correct

  • Question 8
    1 / -0
    The set of values of p for which the power of a point $$(2,5)$$ is negative with respect to a circle $${ x }^{ 2 }+{ y }^{ 2 }-8x-12y+p=0$$ which neither touches the axes nor cuts them are
    Solution
    Power is negative $$\Rightarrow S_{1} < 0$$
    $$\Rightarrow 2^{2}+5^{2}-16- 60+p < 0$$
    $$\Rightarrow 4+25-76+p < 0$$
    $$\Rightarrow p < 47$$
    & square of x-coordinate of circle's
    centre > square of radius (does not cut axes)
    $$\Rightarrow g^{2} > g^{2}+f^{2}- c$$
    $$\Rightarrow f^{2}- c < 0 \Rightarrow f^{2} < C$$
    $$\Rightarrow 36 < p$$ similarly $$g^{2} < c$$
    $$\Rightarrow 16 < p \Rightarrow p > 36$$
    $$\Rightarrow p \in (36, 47)$$

  • Question 9
    1 / -0
    If the equation $$ax^{2}+2(a^{2}+ab-16)xy+by^{2}2ax+2by-\sqrt[4]{2}=0$$ represents a circle, the radius of the circle is 
    Solution
    $$a{x}^{2} + 2 \left( {a}^{2} + ab - 16 \right) xy + b {y}^{2} + 2ax + 2by - \sqrt[4]{2} = 0$$
    If the above equation represents the equation of circle then-
    $$a = b ..... \left( 1 \right)$$
    $${a}^{2} + ab - 16 = 0$$
    $$\Rightarrow {a}^{2} + {a}^{2} - 16 = 0$$
    $$\Rightarrow 2{a}^{2} = 16$$
    $$\Rightarrow {a}^{2} = 8$$
    $$\therefore {b}^{2} = {a}^{2} = 8$$
    Radius of circle $$\left( r \right) = \sqrt{{a}^{2} + {b}^{2} - c}$$
    $$\Rightarrow r = \sqrt{8 + 8 + \sqrt[4]{2}}$$
    $$\Rightarrow r = \sqrt{16 + \sqrt[4]{2}}$$
    Hence the radius of the circle is $$\sqrt{16 + \sqrt[4]{2}}$$.
  • Question 10
    1 / -0
    A circle has radius $$3$$ units and its centre lies on the line $$y=x-1$$. if it passes through $$(7,3)$$, its equation
    Solution
    $${\left(x-h\right)}^{2}+{\left(y-k\right)}^{2}={r}^{2}$$
    Here $$\left(h,k\right)\rightarrow$$ centre
    Equation of line through centre 
    $$k=h-1----(1)$$
    & $$\left(x,y\right)$$ point on circle
    So, given $$\left(x,y\right)= \left(7,3\right)$$
    So, $${\left(7-h\right)}^{2}+{\left(3-h+1\right)}^{2}={3}^{2}$$
    Using eqn $$(1)$$
    We get,
    $$28+{h}^{2}-11h=0$$
    $$h=7$$ oR $$4$$
    $$k=6$$ oR $$3$$
    Equation of circle corresponding $$\left(7,6\right)$$
    $${x}^{2}+{y}^{2}-14x-12y+76=0$$
    Equation of circle corresponding $$\left(4,3\right)$$
    $${x}^{2}+{y}^{2}-8x-6y+16=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now