Given:-
A circle which touches the $$x$$-axxis at $$\left( 1, 0 \right)$$ and also passes through the point $$\left( 2, 3 \right)$$.
To find:-
Diameter of the circle
Solution:-
Let the coordinates of centre of the circle be $$\left( h, k \right)$$ and $$r$$ be the radius of the circle.
Now,
Since the circle touches $$x$$-axis at $$\left( 1, 0 \right)$$.
$$\therefore$$ Radius of circle $$\left( r \right) = k$$
Therefore, equation of circle is-
$${\left( x - h \right)}^{2} + {\left( y - k \right)}^{2} = {k}^{2}$$
Given that the circle passes through points $$\left( 1, 0 \right)$$ and $$\left( 2, 3 \right)$$, thus both coordinates will satisfy the equation of circle.
Therefore,
$${\left( 1 - h \right)}^{2} + {k}^{2} = {k}^{2}$$
$$\Rightarrow {\left( h - 1 \right)}^{2} = 0$$
$$\Rightarrow h = 1 ..... \left( 1 \right)$$
$${\left( 2 - h \right)}^{2} + {\left( 3 - k \right)}^{2} = {k}^{2}$$
$$\Rightarrow {h}^{2} + 4 - 4h + 9 + {k}^{2} - 6k = {k}^{2}$$
$$\Rightarrow {h}^{2} - 4h - 6k + 13 = 0 ..... \left( 2 \right)$$
From $${eq}^{n} \left( 1 \right)$$, we have
$${1}^{2} - 4 \left( 1 \right) - 6k + 13 = 0$$
$$1 - 4 - 6k + 13 = 0$$
$$\Rightarrow 6k = 10$$
$$\Rightarrow k = \cfrac{5}{3}$$
Therefore,
Radius of circle $$= \cfrac{5}{3}$$
$$\therefore$$ Diameter of circle $$= 2r = 2 \times \cfrac{5}{3} = \cfrac{10}{3}$$
Thus the diameter of circle is $$\cfrac{10}{3}$$.
Hence the correct answer is $$\left( C \right) \cfrac{10}{3}$$