Self Studies
Selfstudy
Selfstudy

Circles Test 24

Result Self Studies

Circles Test 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of k, such that the equation 
    $$2x^{2}+2y^{2}-6x+8y+k=0$$ represent a point circle , is 
    Solution
    The given equation of circle is
    $$\Rightarrow$$ $$2x^2+2y^2-6x+8y+k=0$$
    $$\Rightarrow$$  $$x^2+y^2-3x+4y+\dfrac{k}{2}=0$$           [ Dividing both sides by $$2$$ ]
    Comparing it with general equation of circle $$x^2+y^2+2gx+2fy+c=0,$$ we get
    $$\Rightarrow$$  $$2g=-3,\,2f=4$$ and $$c=\dfrac{k}{2}$$
    $$\therefore$$  $$g=\dfrac{-3}{2}$$ and $$f=2$$
    Center $$=(-g,-f)=\left(\dfrac{3}{2},\,-2\right)$$
    We know,
    Radius $$(r)=\sqrt{g^2+f^2-c}$$
    We know that for point circle radius is $$0.$$ $$r=0$$
    $$\Rightarrow$$  $$0=\sqrt{\left(\dfrac{3}{2}\right)^2+(-2)^2-\dfrac{k}{2}}$$
    $$\Rightarrow$$  $$0=\sqrt{\dfrac{9}{4}+4-\dfrac{k}{2}}$$
    $$\Rightarrow$$  $$0=\dfrac{9}{4}+4-\dfrac{k}{2}$$
    $$\Rightarrow$$  $$\dfrac{k}{2}=\dfrac{9+16}{4}$$
    $$\Rightarrow$$  $$\dfrac{k}{2}=\dfrac{25}{4}$$
    $$\therefore$$  $$k=\dfrac{25}{2}$$

  • Question 2
    1 / -0
    If the radius of the circle $$x^{2}+y^{2}-18x-12y+k=0$$ be $$11$$ then k=
    Solution
    The equation of circle is $$x^2+y^2-18x-12y+k=0$$.
    Comparing it with $$x^2+y^2+2gx+2fy+c=0$$ we get,
    $$2g=-18,\,2f=-12$$ and $$c=k$$
    $$\therefore$$  $$g=-9,\,f=-6$$ and $$c=k$$
    Center $$=(-g,-f)=(9,6)$$
    Radius of a circle $$(r)=11$$             [ Given ]
    We know,
    $$\Rightarrow$$  $$r=\sqrt{g^2+f^2-c}$$
    $$\Rightarrow$$  $$11=\sqrt{(-9)^2+(-6)^2-k}$$
    $$\Rightarrow$$  $$11=\sqrt{81+36-k}$$
    $$\Rightarrow$$  $$11=\sqrt{117-k}$$
    $$\Rightarrow$$  $$121=117-k$$
    $$\Rightarrow$$  $$4=-k$$
    $$\therefore$$  $$k=-4$$
  • Question 3
    1 / -0
    If $$P\left(2, 8\right)$$ is an interior point of a circle $${x}^{2}+{y}^{2}–2x + 4y – p = 0$$ which neither touches nor intersects the axes, then set for $$p$$ is ______________.
    Solution
    For internal point $$P\left(2,8\right)$$
    $$4+64-8+32-p<0$$
    $$\Rightarrow \,p>92$$ and $$x-$$ intercept$$=2\sqrt{1+p}$$
    $$\therefore\,1+p<0$$
    $$\Rightarrow \,p<-1$$ and $$y-$$ intercept=2\sqrt{2+p}$$
    $$\Rightarrow\,p<-2$$
  • Question 4
    1 / -0
    Find the equation of a circle whose centre is (2, - 1 ) an radius is 3
    Solution
    Center $$=(2,-1)$$ and $$r=3$$            [ Given ]
    We know that, center $$=(-g,-f)$$
    So, by comparing we get, $$g=-2$$ and $$f=1$$
    $$r=\sqrt{g^2+f^2-c}$$
    $$\Rightarrow$$  $$3=\sqrt{(-2)^2+(1)^2-c}$$
    $$\Rightarrow$$  $$9=4+1-c$$
    $$\Rightarrow$$  $$9=5-c$$
    $$\therefore$$  $$c=-4$$
    The equation of circle is
    $$\Rightarrow$$  $$x^2+y^2+2gx+2fy+c=0$$
    $$\Rightarrow$$  $$x^2+y^2+2(-2)x+2(1)y-4=0$$         [ Substituting values of $$g,f$$ and $$c$$ ]
    $$\Rightarrow$$  $$x^2+y^2-4x+2y-4=0$$

  • Question 5
    1 / -0
    The equation of a circle which is passing through the vertices of an equilateral triangle whose median is of length 3 a is
    Solution
    Median of the equilateral triangle is $$3a$$
    $$\Rightarrow=3a$$
    In $$\triangle ADB$$,we have
    $$\Rightarrow(AB)^2=(AD)^2+(BD)^2$$
    $$\Rightarrow(AB)^2=(3a)^2+\left(\dfrac{AB}{2}\right)^2$$
    $$\Rightarrow(AB)^2=9a^2+\dfrac{(AB)^2}{4}$$
    $$\Rightarrow\dfrac{3}{4}(AB)^2=9a^2$$
    $$\Rightarrow(AB)^2=12a^2$$
    Now, In $$\triangle OBD,$$
    $$\Rightarrow(OB)^2=(OD)^2+(BD)^2$$
    $$\Rightarrow r^2=(3a-r)^2+\left(\dfrac{AB}{2}\right)^2$$
    $$\Rightarrow r^2=9a^2+r^2-6ar+3a^2$$   $$[\because(AB)^2=10a^2]$$
    $$\Rightarrow6ar=12a^2$$
    $$\Rightarrow r=2a$$ 
    So, the equation of circle is
    $$\Rightarrow(x-0)^2+(y-0)^2=(2a^2)$$
    $$\Rightarrow x^2+y^2=4a^2$$

  • Question 6
    1 / -0
    A variable circle passes through the fixed point A(p, q) and touches x-axis. The locus of the other end of the diameter through A is?
    Solution
    $$\Rightarrow (h-p)^2+(k-q)=4\left(\dfrac{k+q}{2}\right)^2$$
    $$=k^2+2kq+q^2$$
    $$\Rightarrow (x-p)^2=4qy$$.

  • Question 7
    1 / -0
    $$AB$$ is a chord of the circle $$x^{2} + y^{2} = 9$$. The tangent at $$A$$ and $$B$$ intersect at $$C$$. If $$(1, 2)$$ is the midpoint of $$AB$$, the area of $$\triangle ABC$$ is (in square units).
    Solution
    The equation of chord with midpoint $$(1, 2)$$ in the circle $$x^{2} + y^{2} = 9$$ is
    $$x \times 1 + y\times 2 - 9 = 1^{2} + 2^{2} - 9$$
    $$\Rightarrow x + 2y - 5 = 0 .... (1)$$
    Also, if the point of intersection of tangents $$C$$ has coordinates $$(h, k)$$, then the equation of common chord is
    $$hx + ky - 9 = 0 .... (2)$$
    Since (1) and (2) represent the same equation, we get
    $$\dfrac {h}{1} = \dfrac {k}{2} = \dfrac {9}{5}$$
    $$\Rightarrow h = \dfrac {9}{5}, k = \dfrac {18}{5}$$
    From figure, $$AD = \sqrt {OA^{2} - OD^{2}} = \sqrt {9 - 5} = 2$$
    $$CD = OC - OD = \sqrt {h^{2} + k^{2}} - \sqrt {5} = \dfrac {9}{\sqrt {5}} - \sqrt {5} = \dfrac {4}{\sqrt {5}}$$
    The area of $$ABC = \dfrac {1}{2} AB . CD = AD.CD = 2\times \dfrac {4}{\sqrt {5}} = \dfrac {8}{\sqrt {5}}$$.
  • Question 8
    1 / -0
    A circle whose centre is the point of intersection of the lines $$2x-3y+4=0$$ and $$3x+4y-5=0$$ passes through the origin. Find its equation.
    Solution
    Given, $$2x-3y+4=0$$......(i)
           $$3x+4y-5=0$$......(ii)

    According to question, intersection of eqn (i) and eqn (ii) is the centre of required circle.

    $$\therefore$$ solving (i) & (ii), we get $$x=\dfrac{-1}{17}, y=\dfrac{22}{17}$$
    Distance from centre to origin, will give us the radius.

    $$\therefore D=\sqrt{\left(\dfrac{-1}{17}-0\right)^2+\left(\dfrac{22}{17}-0\right)^2}$$

    $$r=\sqrt{\dfrac{1}{289}+\dfrac{484}{289}}$$
    $$=\sqrt{\dfrac{485}{289}}$$

    $$\therefore r=\dfrac{\sqrt{485}}{17}$$

    Now, eqn of circle $$(x-h)^2+(y-k)^2=r^2$$

    $$\Rightarrow \left(x+\dfrac{1}{17}\right)^2+\left(y-\dfrac{22}{17}\right)^2=\dfrac{485}{289}$$

  • Question 9
    1 / -0
    The equation of the circle with centre $$(2, 2)$$ which passes through $$(4,5)$$ is 
    Solution
    Radius of circle is $$\sqrt{(4-2)^2+(5-2)^2}=\sqrt{13}$$ So, equation of circle is
    $$(x-2)^2+(y-2)^2=13$$
    $$\Rightarrow x^2+4-4x+y^2+4-4y=13$$
    $$\Rightarrow x^2+y^2-4x-4y-5=0$$
  • Question 10
    1 / -0
    The centre of a circle is $$C(2,-5)$$ and the circle passes through the point $$A(3,2)$$. The equation of the circle is
    Solution
    radius of the circle is $$AC=\sqrt { { (3-2) }^{ 2 }+{ (2+5) }^{ 2 } } =\sqrt { 1+49 } =\sqrt { 50 } $$
    equation of the circle is 
    $${ (x-x_1) }^{ 2 }+{ (y-y_1) }^{ 2 }=r^2$$
    $${ (x-2) }^{ 2 }+{ (y+5) }^{ 2 }=50\\ \Rightarrow { x }^{ 2 }+{ y }^{ 2 }-4x+10y-21=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now