Pair of lines:
$$x^{2}+2xy+3x+6y=0$$
$$\Rightarrow x(x+2y)+3(x+2y)=0$$
$$\Rightarrow (x+2y)(x+3)=0$$
$$\Rightarrow x+2y=0$$
and $$x+3=0$$
Are the two normals and their point of intersection must be the centre of the circle.
$$\Rightarrow x=-3$$
and $$y=\dfrac{-x}{2}=\dfrac{3}{2}$$
$$\Rightarrow (-3,\dfrac{3}{2}) $$ is the centre of required circle.
($$\because x(x-4)+y(y-3)=0$$ is the diametric form of the circle. Hence, $$(0,0)$$ and $$(4,3)$$ are the diametric end points.)
$$\Rightarrow$$ Centre $$\rightarrow (\dfrac{0+4}{2},\dfrac{0+3}{2})\rightarrow (2,\dfrac{3}{2})$$
radius $$=\dfrac{1}{2}(\sqrt{16+9})$$
$$=\dfrac{5}{2}$$
The required circle with centre $$(-3,\dfrac{3}{2})$$ is just sufficient to contain the circle
$$x(x-4)+y(y-3)=0$$
$$\therefore$$ radius of required circle
=distance between $$(-3,\dfrac{3}{2})$$ and $$(2,\dfrac{3}{2})$$ $$+$$ radius of given circle.
$$=\sqrt{(-3-2)^{2}+0}+\dfrac{5}{2}$$
$$=5+\dfrac{5}{2}=\dfrac{15}{2}$$
$$\therefore$$ Equation of required circle:
$$\Rightarrow (x+3)^{2}+(y-\dfrac{3}{2})^{2}=\dfrac{225}{4}$$
$$\Rightarrow x^{2}+y^{2}+9+\dfrac{9}{4}+6x-3y=\dfrac{225}{4}$$
$$\Rightarrow x^{2}+y^{2}+6x-3y+9+\dfrac{9}{4}-\dfrac{225}{4}=0$$
$$\Rightarrow x^{2}+y^{2}+6x-3y+9-\dfrac{216}{4}=0$$
$$\Rightarrow x^{2}+y^{2}+6x-3y+9-54=0$$
$$\Rightarrow x^{2}+y^{2}+6x-3y-45=0$$
$$\therefore B)$$ Answer.