Self Studies
Selfstudy
Selfstudy

Circles Test 26

Result Self Studies

Circles Test 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A thin rod of length $$l$$ in the shape of a semicircle is pivoted at one of its ends such that it is free to oscillate in its own plane. The frequency $$f$$ of small oscillations of the semicircular rod is :
    Solution
    We know that $$T=2\pi \sqrt{\dfrac{I}{mgl_{eff}}}$$
    $$I=2mR^2$$
    So,
    $$l_{eff}=\sqrt{R^2+(\dfrac{2R}{\pi})^2}=\dfrac{R}{\pi}\sqrt{\pi^2+4}$$
    On subsituting these value in T, we get
    $$T=2\pi \sqrt{\dfrac{2mR^2}{mg\dfrac{R}{\pi}\sqrt{\pi^2+4}}}=2\pi \sqrt{\dfrac{2\pi R}{g\sqrt{\pi^2+4}}}$$
    We know that $$R=\dfrac{l}{\pi}$$
    Therefore,
    $$T=2\pi \sqrt{\dfrac{2\pi l}{\pi g\sqrt{\pi^2+4}}}=2\pi \sqrt{\dfrac{2l}{g\sqrt{\pi^2+4}}}$$
    Frequency $$f=\dfrac{1}{T}=\dfrac{1}{2\pi}\sqrt{\dfrac{g\sqrt{\pi^2+4}}{2l}}$$
  • Question 2
    1 / -0

    Directions For Questions

    Circle touching a line $$L=0$$ at a point $$\left({x}_{1},{y}_{1}\right)$$ on it is 
    $${\left(x-{x}_{1}\right)}^{2}+{\left(y-{y}_{1}\right)}^{2}+\lambda L=0,\lambda\in R$$ 
    Circle through the two points $$A\left({x}_{1},{y}_{1}\right)$$ and $$B\left({x}_{2},{y}_{2}\right)$$ is
    $$\left(x-{x}_{1}\right)\left(x-{x}_{2}\right)+\left(y-{y}_{1}\right)\left(y-{y}_{2}\right)+\lambda L=0 , \lambda \in R$$
    where $$L=0$$ is the equation of the line $$AB$$
    On the basis of the above information,answer the following questions:

    ...view full instructions

    From the point $$A\left(0,3\right)$$ on the circle $${x}^{2}-4x+{\left(y-3\right)}^{2}=0$$ a chord $$AB$$ is drawn and extended to a point $$M$$ such that $$AM=2AB$$.The locus is
    Solution
    $${x}^{2}-4x+{\left(y-3\right)}^{2}=0$$
    Add $$4$$ both sides of the above equation, we get
    $$\Rightarrow {x}^{2}-4x+4+{\left(y-3\right)}^{2}=4$$
    $$\Rightarrow {\left(x-2\right)}^{2}+{\left(y-3\right)}^{2}=4$$
    Take $$B=\left(2+2\cos\theta,3+2\sin\theta\right)$$
    $$\therefore 2+2\cos\theta=\dfrac{x+0}{2} , 3+2\sin\theta=\dfrac{y+3}{2}$$
    or $$2\cos\theta=\dfrac{x}{2}-2, 2\sin\theta=\dfrac{y+3}{2}-3$$
    or $$2\cos\theta=\dfrac{x-4}{2}, 2\sin\theta=\dfrac{y-3}{2}$$
    Eliminating $$\theta$$ we get
    $${\left(2\cos\theta\right)}^{2}+{\left(2\sin\theta\right)}^{2}={\left(\dfrac{x-4}{2}\right)}^{2}+{\left(\dfrac{y-3}{2}\right)}^{2}$$
    $$4={\left(\dfrac{x-4}{2}\right)}^{2}+{\left(\dfrac{y-3}{2}\right)}^{2}$$
    $${\left(x-4\right)}^{2}+{\left(y-3\right)}^{2}=16$$
    On simplifying , we get
    $${x}^{2}+{y}^{2}-8x-6y+9=0$$
  • Question 3
    1 / -0
    If $$(\alpha, \beta)$$ is a point on the circle whose centre is on the x-axis and which touches the line x + y = 0 at (2, -2),  then the greatest value of $$\alpha$$ is
    Solution
    Given: $$(\alpha,\beta)$$ is a point on the circle whose centre is an the x-axis and which touches the line $$x+y=0$$ AT $$(2,-2)$$

    Let $$(a,o)$$ is the centre C and P is $$(2,-2)$$

    which is given

    then $$\angle COP =45^0$$

    Since the equation of $$OP$$ is $$x+y=0$$

    thus also then $$\angle OCP=45^0$$

    $$\therefore OP=2\sqrt?{2}=CP$$

    Here, $$OC=4$$

    The point  on the circle with the greatest coordinate is $$B$$.

    $$\alpha=OB$$

    $$\alpha=OC+CB$$

    $$\alpha=4+2\sqrt{2}$$

    Hence, greatest value of $$\alpha=4+2\sqrt{2}$$

    $$\therefore$$ Option C is correct.

  • Question 4
    1 / -0
    Circles are drawn passing through the origin $$O$$ to intersect the coordinate axes at point $$P$$ and $$Q$$ such that $$m$$. $$PO+n.OQ=k$$, then the fixed point satisfy all of them, is given by
    Solution
    $${x}^{2}+{y}^{2}+2gx+2fy+c=0$$
    $$C=0$$
    $${x}^{2}+{y}^{2}+2gx+2fy=0$$
    $${x}^{2}+2g\left(x\right)=0$$
    $$x\left(x+2g\right)=0$$
    $${x}^{2}+{y}^{2}+2gx+2fy=0\quad \quad H.O.P+nOQ=k$$
    For$$\left(m, n\right)\quad {m}^{2}+{n}^{2}+2gm+2fn\quad \quad H\left(-2g\right)+n\left(-2f\right)=k$$
    $${m}^{2}+{n}^{2}-k\neq0\quad \quad  2mg-2n7=-k$$
    for$$\left(\dfrac{mk}{{m}^{2}+{n}^{2}}- \dfrac{nk}{{m}^{2}+{n}^{2}}\right)=$$
    $$\left( \dfrac { { m }^{ 2 }{ k }^{ 2 } }{ { \left( { m }^{ 2 }{ +k }^{ 2 } \right)  }^{ 2 } } \quad \dfrac { n^{ 2 }{ k }^{ 2 } }{ { \left( { m }^{ 2 }{ +n }^{ 2 } \right)  }^{ 2 } }  \right) +2g\left( \dfrac { mk }{ { m }^{ 2 }{ +n }^{ 2 } }  \right) +2f\left( \dfrac { nk }{ { m }^{ 2 }{ +n }^{ 2 } }  \right) \\ $$
    $$=\dfrac { { k }^{ 2 }\left( { m }^{ 2 }+{ n }^{ 2 } \right) +k\left( { m }^{ 2 }+{ n }^{ 2 } \right) \left( -k \right)  }{ { \left( { m }^{ 2 }+{ n }^{ 2 } \right)  }^{ 2 } } $$
    $$\Rightarrow \left(\dfrac{mk}{{m}^{2}+{n}^{2}}, \dfrac{nk}{{m}^{2}+{n}^{2}}\right)$$

  • Question 5
    1 / -0
    The centre of a circle is $$(2, -3)$$ and the circumference is $$10\pi$$. Then, the equation of the circle is
    Solution

    The circumference of the circle is given as $$10\pi $$.

    $$C = 2\pi r$$

    $$10\pi  = 2\pi r$$

    $$r = \frac{{10\pi }}{{2\pi }}$$

    $$r = 5$$

    The general form of the equation is,

    $${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}$$

    The center of the circle is given as $$\left( {h,k} \right) = \left( {2, - 3} \right)$$

    $${\left( {x - 2} \right)^2} + {\left( {y - \left( { - 3} \right)} \right)^2} = {\left( 5 \right)^2}$$

    $${\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 25$$

    $${x^2} + 4 - 4x + {y^2} + 9 + 6y = 25$$

    $${x^2} + {y^2} - 4x + 6y + 13 = 25$$

    $${x^2} + {y^2} - 4x + 6y - 25 + 13 = 0$$

    $${x^2} + {y^2} - 4x + 6y - 12 = 0$$

    Therefore, the equation of the circle is,

    $${x^2} + {y^2} - 4x + 6y - 12 = 0$$

  • Question 6
    1 / -0
    A conic $$C$$ passes through the points $$(2,4)$$ and is such that the segment of any of its tangents at any point contained between the co-ordinate axis is biscected at the point of tangency. Let $$S$$ denotes circle described on the foci $${F_1}$$ and $${F_2}$$ of the conic $$C$$ as diameter.
    Equation of the circle $$S$$ is
    Solution

  • Question 7
    1 / -0
    The centre of a circle passing through the point $$(0,0),(1,0)$$ and touching the circle $$x^{2}+y^{2}=9$$ is ?
    Solution
    Let the circle be$$x^{2}+y^{2}+2gx+2fy+c=0$$
    $$\because$$ It passes through $$(0,0)$$
    $$\Rightarrow 0+c=0$$
    $$\Rightarrow c=0$$
    It also passes through $$(1,0)$$
    $$\Rightarrow 1+0+2g+0+c=0$$
    $$\Rightarrow g=\dfrac{-c-1}{2}=\dfrac{-1}{2}$$
    $$\therefore$$Circle $$\rightarrow x^{2}+y^{2}-x+2fy=0$$
    Centre$$\rightarrow (\dfrac{1}{2},-f)$$
    Other circle : $$x^{2}+y^{2}=9$$
    Centre \rightarrow (0,0)$$
    Radius $$=3$$
    $$\because Circles touches internally.
    $$\therefore $$ Difference between radius = Distance between centres.
    Radius of smaller circle $$=\sqrt{g^{2}+f^{2}-0}=\sqrt{\dfrac{1}{4}+f^{2}}$$
    $$\Rightarrow 3-\sqrt{\dfrac{1}{4}+f^{2}}=\sqrt{(-g-0)^{2}+(-f-0)^{2}}$$
    $$\Rightarrow 3-\sqrt{\dfrac{1 }{4}+f^{2}}=\sqrt{\dfrac{1}{4}+f^{2}}$$
    $$\Rightarrow 2\sqrt{\dfrac{1}{4}+f^{2}}=3$$
    $$\Rightarrow \dfrac{1}{4}+f^{2}=\dfrac{9}{4}$$
    $$\Rightarrow f^{2}=\dfrac{8}{4}=2$$
    $$\Rightarrow f=\pm \sqrt{2}$$
    Hence centre $$\rightarrow (-g,-f)$$
    $$\Rightarrow(\dfrac{1}{2},\pm\sqrt{2})$$
    $$\therefore$$None of the options is correct.

  • Question 8
    1 / -0
    If the centroid of an equilateral triangle  $$(1,1)$$ and its one vertex is $$(-1,2)$$ , then the equation of the circumcircle is 
    Solution

  • Question 9
    1 / -0
    The equation of the circle having the lines $$x^2 + 2xy + 3x + 6y = 0$$ as its normals and having size just sufficient to contain the circle $$x (x - 4) + y(y - 3) = 0$$ is
    Solution
    Pair of lines:
    $$x^{2}+2xy+3x+6y=0$$
    $$\Rightarrow x(x+2y)+3(x+2y)=0$$
    $$\Rightarrow (x+2y)(x+3)=0$$
    $$\Rightarrow x+2y=0$$
    and $$x+3=0$$
    Are the two normals and their point of intersection must be the centre of the circle.
    $$\Rightarrow x=-3$$
    and $$y=\dfrac{-x}{2}=\dfrac{3}{2}$$
    $$\Rightarrow (-3,\dfrac{3}{2}) $$ is the centre of required circle.
    ($$\because x(x-4)+y(y-3)=0$$  is the diametric form of the circle. Hence, $$(0,0)$$ and $$(4,3)$$ are the diametric end points.)
    $$\Rightarrow$$ Centre $$\rightarrow (\dfrac{0+4}{2},\dfrac{0+3}{2})\rightarrow (2,\dfrac{3}{2})$$
    radius $$=\dfrac{1}{2}(\sqrt{16+9})$$
    $$=\dfrac{5}{2}$$
    The required circle with centre $$(-3,\dfrac{3}{2})$$ is just sufficient to contain the circle
    $$x(x-4)+y(y-3)=0$$
    $$\therefore$$ radius of required circle
    =distance between $$(-3,\dfrac{3}{2})$$ and $$(2,\dfrac{3}{2})$$   $$+$$ radius of given circle.
    $$=\sqrt{(-3-2)^{2}+0}+\dfrac{5}{2}$$
    $$=5+\dfrac{5}{2}=\dfrac{15}{2}$$
    $$\therefore$$ Equation of required circle:
    $$\Rightarrow (x+3)^{2}+(y-\dfrac{3}{2})^{2}=\dfrac{225}{4}$$
    $$\Rightarrow x^{2}+y^{2}+9+\dfrac{9}{4}+6x-3y=\dfrac{225}{4}$$
    $$\Rightarrow x^{2}+y^{2}+6x-3y+9+\dfrac{9}{4}-\dfrac{225}{4}=0$$
    $$\Rightarrow x^{2}+y^{2}+6x-3y+9-\dfrac{216}{4}=0$$
    $$\Rightarrow x^{2}+y^{2}+6x-3y+9-54=0$$
    $$\Rightarrow x^{2}+y^{2}+6x-3y-45=0$$
    $$\therefore B)$$ Answer.

  • Question 10
    1 / -0
    If the equation $$\frac { \lambda ( x + 1 ) ^ { 2 } } { 3 } + \frac { ( y + 2 ) ^ { 2 } } { 4 } = 1$$ represents a circle then $$\lambda =$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now