Self Studies
Selfstudy
Selfstudy

Circles Test 27

Result Self Studies

Circles Test 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    ABCD is a square of side 1 unit. A circle passes through vertices A,B of the square and the remaining two vertices of the square lie out side the circle. The length of the tangent draw to the circle from vertex D is 2 units. The radius of the circle is 
    Solution

  • Question 2
    1 / -0
    Find the equation of the circle having $$(1, -2)$$ as its centre and passing through the intersection of the lines $$3x+y=14$$ and $$2x+5y=18$$.
    Solution

  • Question 3
    1 / -0
    The equation of the circle which bisects the circumference of the circles  $$x^{2}+y^{2} =1, \;x^{2}+y^{2}-2x =3$$ and $$x^2+y^{2}+2y =3$$ is
    Solution

  • Question 4
    1 / -0
    The equation of the circle passing through $$(4,6)$$ and having centre $$(1,2)$$ is
    Solution
    Let coordinates of point A are $$\left( 4,6 \right) $$
    As circle is passing through point A, point A lies on circle.

    Let center of circle is $$C\left( 1,2 \right) $$
    $$\therefore h=1$$ and $$k=2$$

    Thus, AC is radius of circle.

    By distance formula,
    $$AC=r=\sqrt { { \left( 4-1 \right)  }^{ 2 }+{ \left( 6-2 \right)  }^{ 2 } } $$

    $$\therefore r=\sqrt { { \left( 3 \right)  }^{ 2 }+{ \left( 4 \right)  }^{ 2 } } $$

    $$\therefore r=\sqrt { 9+16 } $$

    $$\therefore r=\sqrt { 25 } $$

    $$\therefore r=5$$

    Thus, equation of circle is,
    $${ \left( x-h \right)  }^{ 2 }+{ \left( y-k \right)  }^{ 2 }={ r }^{ 2 }$$

    $${ \left( x-1 \right)  }^{ 2 }+{ \left( y-2 \right)  }^{ 2 }=\left( 5 \right) ^{ 2 }$$

    $${ x }^{ 2 }-2x+1+y^{ 2 }-4y+4=25$$

    $$\therefore { x }^{ 2 }+y^{ 2 }-2x-4y-20=0$$

    Thus, answer is option (A)
  • Question 5
    1 / -0
    The equation $$y = \sqrt{2 - x^2 - y^2} + \sqrt{x^2 + y^2 - 2}$$ represents, where $$x > 0$$
    Solution

  • Question 6
    1 / -0
    The equation of the circle, passing through the point $$\left(2,8\right)$$, touching the lines $$4x-3y-24=0$$ and $$4x+3y-42=0$$ and having x coordinate of the centre of the circle numerically less then or equal to 8 is
    Solution
    Since $$C\left(\alpha,\beta\right)$$ be the centre of the circle.
    Since the circle passes through the point $$\left(2,8\right)$$
    $$\therefore$$ Radius of the circle$$=\sqrt{{\left(\alpha-2\right)}^{2}+{\left(\beta-8\right)}^{2}}$$
    Since the circle touches the lines $$4x-3y-24=0$$ and $$4x+3y-42=0$$
    $$\therefore\left|\dfrac{4\alpha-3\beta-24}{\sqrt{{4}^{2}+{5}^{2}}}\right|=\left|\dfrac{4\alpha+3\beta-42}{\sqrt{{4}^{2}+{5}^{2}}}\right|=\sqrt{{\left(\alpha-2\right)}^{2}+{\left(\beta-8\right)}^{2}}$$        ........$$\left(1\right)$$
    Solving them, we get
    $$4\alpha-3\beta-24=\pm\left(4\alpha+3\beta-42\right)$$     ........$$\left(3\right)$$
    $$\therefore 6\beta=18$$ or $$\beta=3$$ by taking the positive sign
    and $$8\alpha=66$$ or $$\alpha=\dfrac{66}{8}=\dfrac{33}{4}$$ by taking negative sign.
    Given $$\left|\alpha\right|\le 8\Rightarrow -8\le \alpha \le 8$$
    $$\therefore \alpha \neq \dfrac{33}{4}$$
    Put $$\beta=3$$ in equations $$\left(1\right)$$ and $$\left(3\right)$$ and equating, we get
    $${\left(4\alpha-33\right)}^{2}={\left(\alpha-2\right)}^{2}+25$$
    $$\Rightarrow 16{\alpha}^{2}-264\alpha+1089=25{\alpha}^{2}+725-100\alpha$$
    $$\Rightarrow 9{\alpha}^{2}+164\alpha-364=0$$ which is quadratic in $$\alpha$$
    $$\therefore \alpha=\dfrac{-164\pm\sqrt{{164}^{2}-36\times -364}}{2\times 9}=\dfrac{-164\pm\sqrt{{164}^{2}+36\times 364}}{18}$$
               $$=\dfrac{-164\pm\sqrt{40000}}{18}=\dfrac{-164\pm 200}{18}=2,\dfrac{-182}{9}$$
    But $$-8\le \alpha\le 8$$ $$\therefore \alpha=2$$
    Now $${r}^{2}={\left(\alpha-2\right)}^{2}+{\left(3-8\right)}^{2}={\left(2-2\right)}^{2}+{\left(3-8\right)}^{2}=25$$ where $$r$$ is the radius of the circle
    Hence the required equation of the required circle is
    $${\left(x-2\right)}^{2}+{\left(y-3\right)}^{2}=25$$
    $${x}^{2}+{y}^{2}-4x-6y+4+9-25=0$$ or $${x}^{2}+{y}^{2}-4x-6y-12=0$$

  • Question 7
    1 / -0
    The centre of family of circles cutting the family of circles $$x^2+y^2+4x(\lambda-\dfrac{3}{2})+3y(\lambda-\dfrac{4}{3})-6(\lambda+2)=0$$, lies on 
  • Question 8
    1 / -0
    If $$x=2+3\cos\theta$$ and $$y=1-3\sin\theta$$ represent a circle then the centre and radius is?
    Solution
    We have,
    $$x=2+3\cos\theta\Rightarrow 3\cos \theta\Rightarrow 3\cos\theta =x-2$$ ..(i)
    $$y=1-3\sin\theta \Rightarrow 3\sin\theta =-y+1$$ ..(ii)
    Squaring adding (i) & (ii), we get
    $$(x-2)^2(-(y-1))^2=3^2(\cos^2\theta +\sin^2\theta)$$
    $$\Rightarrow (x-2)^2+(-(y-1))^2=3^2$$
    $$\therefore$$ Radius $$=3$$, centre $$=(2, 1)$$.
  • Question 9
    1 / -0
    The equation $${ x }^{ 2 }+{ y }^{ 2 }+4x+6y+13=0\quad $$ represents 
    Solution

  • Question 10
    1 / -0
    If $$x ^ { 2 } + y ^ { 2 } - 2 x + 2 a y + a + 3 = 0$$ represents a real circle with non-zero radius, then most appropriate is?
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now