Since $$C\left(\alpha,\beta\right)$$ be the centre of the circle.
Since the circle passes through the point $$\left(2,8\right)$$
$$\therefore$$ Radius of the circle$$=\sqrt{{\left(\alpha-2\right)}^{2}+{\left(\beta-8\right)}^{2}}$$
Since the circle touches the lines $$4x-3y-24=0$$ and $$4x+3y-42=0$$
$$\therefore\left|\dfrac{4\alpha-3\beta-24}{\sqrt{{4}^{2}+{5}^{2}}}\right|=\left|\dfrac{4\alpha+3\beta-42}{\sqrt{{4}^{2}+{5}^{2}}}\right|=\sqrt{{\left(\alpha-2\right)}^{2}+{\left(\beta-8\right)}^{2}}$$ ........$$\left(1\right)$$
Solving them, we get
$$4\alpha-3\beta-24=\pm\left(4\alpha+3\beta-42\right)$$ ........$$\left(3\right)$$
$$\therefore 6\beta=18$$ or $$\beta=3$$ by taking the positive sign
and $$8\alpha=66$$ or $$\alpha=\dfrac{66}{8}=\dfrac{33}{4}$$ by taking negative sign.
Given $$\left|\alpha\right|\le 8\Rightarrow -8\le \alpha \le 8$$
$$\therefore \alpha \neq \dfrac{33}{4}$$
Put $$\beta=3$$ in equations $$\left(1\right)$$ and $$\left(3\right)$$ and equating, we get
$${\left(4\alpha-33\right)}^{2}={\left(\alpha-2\right)}^{2}+25$$
$$\Rightarrow 16{\alpha}^{2}-264\alpha+1089=25{\alpha}^{2}+725-100\alpha$$
$$\Rightarrow 9{\alpha}^{2}+164\alpha-364=0$$ which is quadratic in $$\alpha$$
$$\therefore \alpha=\dfrac{-164\pm\sqrt{{164}^{2}-36\times -364}}{2\times 9}=\dfrac{-164\pm\sqrt{{164}^{2}+36\times 364}}{18}$$
$$=\dfrac{-164\pm\sqrt{40000}}{18}=\dfrac{-164\pm 200}{18}=2,\dfrac{-182}{9}$$
But $$-8\le \alpha\le 8$$ $$\therefore \alpha=2$$
Now $${r}^{2}={\left(\alpha-2\right)}^{2}+{\left(3-8\right)}^{2}={\left(2-2\right)}^{2}+{\left(3-8\right)}^{2}=25$$ where $$r$$ is the radius of the circle
Hence the required equation of the required circle is
$${\left(x-2\right)}^{2}+{\left(y-3\right)}^{2}=25$$
$${x}^{2}+{y}^{2}-4x-6y+4+9-25=0$$ or $${x}^{2}+{y}^{2}-4x-6y-12=0$$