Self Studies
Selfstudy
Selfstudy

Circles Test 3

Result Self Studies

Circles Test 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation to the circle with centre $$(2,1)$$ and touches the line $$3x+4y-5$$ is ?
    Solution
    $$\perp$$ distance of pt. $$(2, 1)$$ from line $$3x+4y-5$$ is radius(r)

    $$\Rightarrow r=\dfrac{|6+4-5|}{5}=\dfrac{5}{5}=1$$

    $$\Rightarrow$$ Equation of circle is

    $$(x-2)^2+(y-1)^2=1$$

    $$\Rightarrow x^2+y^2-4x-2y+4=0$$

    $$\Rightarrow$$ Option C is correct.
  • Question 2
    1 / -0
    Find the equation of the circle  passing through the origin and centre lies on the point  of intersection of the lines $$2x+y=3$$ and $$3x+2y=5$$.
    Solution
    According to question the centre of the circle is the intersection of lines $$L_1 :2x+y=3$$ and $$L_2:3x+2y=5$$

    Multiplying equation $$L_1$$ by 2 and subtracting it from $$L_1$$,

         $$3x+2y=5$$

    $$\underline{\pm4x\pm2y=\pm6}$$

       $$-x+0=-1 \Rightarrow x=1$$

    Putting the value of x in equation$$L_1,2\times1+y=3\Rightarrow y=3-2=1$$

    So, the centre of the circle is $$(1,1)$$

    And the circle passes through origin $$(0,0)$$ thus, Radius=$$\sqrt{(1-0)^2+(1-0)^2}=\sqrt2$$

    $$\therefore$$Equation of the circle is $$(x-h)^2+(y-k)^2=r^2$$ ,where centre is $$(h,k)\equiv(1,1)$$ and radius $$r=\sqrt2$$

    $$(x-1)^2+(y-1)^2=(\sqrt2)^2\Rightarrow x^2+y^2-2x-2y=0.$$ 
  • Question 3
    1 / -0
    The length of the diameter of the circle $${x^2} + {y^2} - 4x - 6y + 4 = 0$$
    Solution

    Consider the given circle equation.

    $${{x}^{2}}+{{y}^{2}}-4x-6y+4=0$$            …… (1)

     

    We know that the general equation of circle,

    $${{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0$$       …… (2)

     

    On comparing equation (1) and (2), we get

    $$ 2g=-4\Rightarrow g=-2 $$

    $$ 2f=-6\Rightarrow f=-3 $$

    $$ c=4 $$

     

    So, the centre of the circle

    $$ C=\left( -g,-f \right) $$

    $$ C=\left( 2,3 \right) $$

     

    We know that the radius of circle,

    $$r=\sqrt{{{g}^{2}}+{{f}^{2}}-c}$$

    $$ r=\sqrt{{{2}^{2}}+{{3}^{2}}-4} $$

    $$ r=\sqrt{4+9-4} $$

    $$ r=\sqrt{9}=3 $$

     

    So, the diameter of this circle

    $$d=2r=6$$

     

    Hence, this is the answer.

  • Question 4
    1 / -0
    The locus of a point which is at a constant distance 5 from the fixed point $$(2,3)$$ is:
    Solution

    Let $$\left( {x,y} \right)$$ be point then ATQ

                    $$\sqrt {{{\left( {x - 2} \right)}^2} + {{\left( {y - 3} \right)}^2} = 5} $$

                    $${\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 25$$

                    $${x^2} + {y^2} + 4 + 9 - 4x - 6y = 25$$

                    $$ \Rightarrow {x^2} + {y^2} - 4x - 6y - 12 = 0$$

  • Question 5
    1 / -0
    Find the equation of the circle : 
    Centered at $$(3,-2)$$ with radius $$4$$. 
    Solution
    The center radius form equation of circle is $$(x-h)^2+(y-k)^2=r^2$$, where $$(h,k)$$ is the center and $$r$$ is the radius.
    Here, $$(h,k)\equiv(3,-2)$$ and $$r=4$$
    $$\therefore$$ Equation of circle: - $$(x-3)^2+(y-(-2))^2=4^2\Rightarrow x^2+9-6x+y^2+4+4y=16\Rightarrow x^2+y^2-6x+4y=3$$
  • Question 6
    1 / -0
    If the vertices of a triangle are $$(2, -2), (-1, -1)$$ and $$(5, 2)$$ then the equation of its circumcircle is?
    Solution

    To find circumcentre we write the equation of perpendicular bisectors of two sides and find their intersection,


    3x-y-3=0 and 6x+8y-21=0

    Their intersection point is ($$\dfrac{3}{2}$$,$$\dfrac{3}{2}$$)


    Radius of circumcircle = Distance of ($$\dfrac{3}{2}$$,$$\dfrac{3}{2}$$)

    from (2,-2) or any other vertex = $$\dfrac{5}{\sqrt{2}}$$

    So equation of circle = ($$x-\frac{3}{2})^2$$ +($$y-\frac{3}{2})^2$$=$$\dfrac{25}{2}$$ which corresponds to B option .


  • Question 7
    1 / -0
    The equation of the circle passing through (2,0) and (0,4) and having the minimum radius is 
    Solution
    Let $$(x-h)^2+(y-k)^2=r^2$$ …………..$$(1)$$
    where (h, k) is the centre of the circle and r is the radius.
    Let us draw a line $$A(2, 0)$$ and $$B(4, 0)$$. If the centre lies outside the line AB then it is a chord.
    The diameter of the circle is bigger than the chord. Suppose AB is the diameter of the circle then the centre of the circle must be a midpoint of AB.
    $$\therefore$$ Using section formula
    $$h=\dfrac{2+0}{2}=\dfrac{2}{2}=1$$
    $$k=\dfrac{4+0}{2}=\dfrac{4}{2}=2$$
    $$\therefore$$ Coordinates of the centre$$=(h, k)$$
    $$=(1, 2)$$
    Equation $$(1)$$ becomes,
    $$(x-1)^2+(y-2)^2=r^2$$ …………….$$(2)$$
    Since $$(2)$$ passes through $$(2, 0)$$, equation $$(2)$$ can be written as,
    $$(2-1)^2+(0-2)^2=r^2$$
    $$1^2+2^2=r^2$$
    $$1+4=r^2$$
    $$r^2=5$$
    $$r=\sqrt{5}$$
    Equation of the circle with minimum radius is
    $$\therefore (x-1)^2+(y-2)^2=5$$
    $$\Rightarrow x^2+1-2x+y^2+4-4y=5$$
    $$\Rightarrow x^2+y^2-2x-4y+5-5=0$$
    $$\Rightarrow x^2+y^2-2x-4y=0$$.

  • Question 8
    1 / -0
    For what value of $$k$$, does the equation $$9{x^2} + {y^2} = k\left( {{x^2} - {y^2} - 2x} \right)$$ represents equation of a circle?
    Solution
    $$9{ x }^{ 2 }-k{ x }^{ 2 }+{ y }^{ 2 }+k{ y }^{ 2 }+2kx=0\\ { x }^{ 2 }(9-k)+{ y }^{ 2 }(1+k)+2kx=0$$
    for circle
    $$9-k=1+k $$
    So, $$k=4$$
  • Question 9
    1 / -0
    Which of the following is the equation of a circle?
    Solution

  • Question 10
    1 / -0
    The centre of the circle given by $$\mathbf { r } \cdot ( \mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k } ) = 15 \text { and } | \mathbf { r } - ( \mathbf { j } + 2 \mathbf { k } ) | = 4 ,$$
    Solution
    $$\begin{array}{l} The\, equation\, of\, line\, pas\sin  g\, through\, centre \\ \vec { i } +2\vec { k } \, and\, normal\, to\, the\, given\, plane \\ \vec { r } =\vec { j } +2\vec { k } +\lambda \left( { \vec { i } +2\vec { j } +2\vec { k }  } \right) \, \, \, \, \, \, -----\left( 1 \right)  \\ This\, plane\, meets\, the\, plane\, at\, a\, po{ { int } }\, for\, which \\ \left[ { \left( { \vec { j } +2\vec { k }  } \right) +\lambda \left( { \vec { i } +2\vec { j } +2\vec { k }  } \right)  } \right] \left( { \vec { i } +2\vec { j } +2\vec { k }  } \right) =15 \\ \Rightarrow 6+9\lambda =15 \\ \Rightarrow 9\lambda =9 \\ \therefore \lambda =1 \\ substituting\, value\, of\, \lambda \, in\, eq{ u^{ n } }\left( 1 \right)  \\ \vec { r } =\vec { j } +2\vec { k } +\vec { i } +2\vec { j } +2\vec { k }  \\ \Rightarrow \vec { r } =\vec { i } +3\vec { j } +4\vec { k }  \\ \therefore Centre\, is\, \left( { 1,\, 3,\, 4 } \right)  \end{array}$$

    Hence, option $$B$$ is the correct answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now