Self Studies
Selfstudy
Selfstudy

Circles Test 5

Result Self Studies

Circles Test 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of the circle which touches x-axis at $$(0,0)$$ and touches the line $$3x + 4y-  5 =0$$ is
    Solution

    Equation of circle touching x-axis at $$(0,0),$$ means centre of circle lie on Y-axis i.e. $$(0,k)$$.

    $$(x-0)^{2}+(y-k)^{2}=k^{2}$$

    $$S : x^{2}+y^{2}-2ky=0 ...... (1)$$


    Circle S touches line $$3x+4y-5=0$$
    Perpendicular distance from the centre (0,k) of circle to the given line is equal to the radius of the circle

    $$\therefore k=\left | \dfrac{3(0)+4k-5}{\sqrt{3^2+4^2}} \right |=\left|{\dfrac{4k-5}{5}}\right|$$

    $$5k=4k-5$$

    $$k=-5$$

    $$\therefore $$ Equation of circle is

    $$x^{2}+y^{2}-(-5)\times2y=0$$

    $$\Rightarrow x^{2}+y^{2}+10 y=0$$

  • Question 2
    1 / -0
    lf the lines $$2x-3y=5$$ and $$3x-4y=7$$ are two diameters of a circle of radius $$7$$ then the equation of the circle is
    Solution
    $$2x-3y=5----(1)$$
    $$3x-4y=7----(2)$$
    Intersection of this lines given centre of circle
    $$\therefore$$ from (1) & (2),
    $$n=1, y=-1$$
    So, equation of circle is
    $$(x-1)^{2}+(y+1)^{2}=(7)^{2}$$
    $$\Rightarrow x^{2}+y^{2}-2x+2y-47=0$$
  • Question 3
    1 / -0
    A line is at a constant distance $$c$$ from the origin and meets the coordinates axes in $$A$$ and $$B$$. The locus of the centre of the circle passing through $$O, A, B$$ is
    Solution
    Let the equation of line be 
    $$\displaystyle \frac{x}{a}+\frac{y}{b}=1$$
    where $$a$$ and $$b$$ are the x-intercept and y-intercept.
    Then the coordinates of A and B are $$(a,0)$$ and $$(0,b)$$
    Distance of origin to the line is $$c$$
    $$\Rightarrow c=\displaystyle \frac{|-1|}{\sqrt{(\dfrac{1}{a})^2+(\dfrac{1}{b})^2}}$$
    $$\Rightarrow \displaystyle \frac{1}{c}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}$$
    $$\Rightarrow \displaystyle \frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}$$   ....(1)
    Let the center of circle through O, A, B be $$(h,k)$$
    Points $$O(0,0), A(a,0),(0,b)$$ forms a right triangle.
    So, the center of circle is the mid-point of AB i.e.$$\displaystyle(\frac{a}{2},\frac{b}{2})$$
    $$\Rightarrow h=\displaystyle \frac{a}{2}, k=\frac{b}{2}$$
    $$\Rightarrow a=2h, b=2k$$
    Substitute this value in (1), we get
    $$ \displaystyle \frac{1}{c^2}=\frac{1}{4h^2}+\frac{1}{4k^2}$$
    $$\Rightarrow \displaystyle \frac{4}{c^2}=\frac{1}{h^2}+\frac{1}{k^2}$$
    $$\Rightarrow 4c^{-2}=x^{-2}+y^{-2}$$ (Replacing $$h,k$$ by $$x,y$$ )
  • Question 4
    1 / -0
    The area of a circle centered at $$(1,2)$$ and passing through $$(4,6)$$ is
    Solution
    Coordinates of the centre of the circle $$\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 1,2 \right) $$ 
    and coordinates of the point through which it passes $$\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 4,6 \right) $$.
    We know that the radius of the circle $$r=\sqrt { { \left( { x }_{ 2 }-{ x }_{ 1 } \right)  }^{ 2 }+{ \left( { y }_{ 2 }-{ y }_{ 1 } \right)  }^{ 2 } } =\sqrt { { \left( 4-1 \right)  }^{ 2 }+{ \left( 6-2 \right)  }^{ 2 } } =\sqrt { 9+16 } =5$$
    Therefore, the area of the circle 
    $$\pi { r }^{ 2 }=\pi { \left( 5 \right)  }^{ 2 }=25\pi $$ sq. units 
  • Question 5
    1 / -0
    The equation of the circle passing through the point $$(-1,2)$$ and having two diameters along the pair of lines $$\mathrm{x}^{2}-\mathrm{y}^{2}-4\mathrm{x}+2\mathrm{y}+3=0$$ is
    Solution
    $$x^{2}-y^{2}-4x+4y+3=0$$ are pair of lines along the diameters  of required circle.
    So, point of intersection this pair of straight line is centre of required circle.
    For point of intersection
    Partial differential w.r.t $$x$$; $$2x-4=0$$ --------(1)
    Partial diff. equation  w rt $$y$$; $$-2y+2=0$$-------(2)
    from (1) & (2), $$x=2 y=1$$
     $$\therefore$$ Equation of circle,
    $$(x-2)^{2}+(y-1)^{2}=r^{2}$$.
    So, (-1,2) lies on $$(x-2)^{2}+(y-2)^{2}=r^{2}$$
    $$9+1=r^{2}$$
    $$r^{2}=10$$
    $$\therefore x^{2}-4x+y^{2}-2y+5=10$$
    $$\Rightarrow x^{2}+y^{2}-4x-2y-5=0$$
  • Question 6
    1 / -0
    If the equation of the incircle of an equilateral triangle is $${ x }^{ 2 }+{ y }^{ 2 }+4x-6y+4=0$$, then the equation of the circumcircle of the triangle is
    Solution
    Given equation of the incirle is $${ x }^{ 2 }+{ y }^{ 2 }+4x-6y+4=0$$
    Its incenter is $$(-2,3)$$ and inradius $$=\sqrt { 4+9-4 } =3$$
    Since in an equilateral triangle, the incenter and the circumcenter coincide,
    $$\therefore$$ Circumcenter $$=(-2,3)$$
    Also, in an equilateral triangle, circumradius $$=2($$ inradius$$)$$
    $$\therefore$$ Circumradius $$=2.3=6$$
    $$\therefore$$ The equation of the circumcircle is
    $${ \left( x+2 \right)  }^{ 2 }+{ \left( y-3 \right)  }^{ 2 }={ \left( 6 \right)  }^{ 2 }\Rightarrow { x }^{ 2 }+{ y }^{ 2 }+4x-6y-23=0$$
  • Question 7
    1 / -0
    The equation of the circle having centre $$(1,\ -2)$$ and passing through the point of intersection of the lines $$3x+y=14$$ and $$2x+5y=18$$ is
    Solution
    The circle passes through intersection of $$3x+y=14$$ and $$2x+5y=18$$.
    $$\therefore 5(3x+y-14)-2x-5y+18=0\implies 15x-70-2x+18=0\implies x=4\implies y=2$$
    Hence, equation of circle is
    $$(x-1)^2+(y+2)^2=(4-1)^2+(2+2)^2$$
    $$\therefore x^2-2x+1+y^2+4y+4=25$$
    $$\therefore x^2+y^2-2x+4y-20=0$$
    This is the required equation.
  • Question 8
    1 / -0
    The equation of the image of the circle $$x^{2}+y^{2}-6x-4y+12=0$$ by the line mirror $$x+y-1=0$$ is
    Solution

    The image of circle w.r.t same line means image of centre w.r.t that line without changing radius
    $$x^{2}+y^{2}-6x-4y+12=0$$
    Centre $$=(3,2)$$ Radius$$=1$$
    Image of $$(3,2)$$ w.r.t $$x+y-1=0$$
    $$\dfrac {x-3}{1}=\dfrac {y-2}{1}=-2\dfrac {(3+2-1)}{1^{1}+1^{2}}=-4$$
    $$x=-1$$, $$y=-2$$
    Then equation of image of circle is
    $$(x+1)^{2}+(y+2)^{2}=(1)^{2}$$
    $$\Rightarrow x^{2}+y^{2}+2x+4y+4=0$$

  • Question 9
    1 / -0
    The equation $$x^{2}+y^{2}-2x+4y+5=0$$ represents 
    Solution
    $$x^{2}+y^{2}-2x+4y+5=0$$
    $$(x-1)^{2}+(y+2)^{2} -5+5=0$$
    $$\Rightarrow (x-1)^{2}+(y+2)^{2}=0$$
    Since, radius is $$0$$, hence its a point

    Alternative method:
    Here, $$a=b=1$$
    $$r=\sqrt{1+4-5}=0$$
    Hence, a circle of radius $$0$$. So, its a point.
  • Question 10
    1 / -0
    A straight line is drawn through the centre of the circle $${x}^{2}+{y}^{2}=2ax$$ parallel to $${x}+2y=0$$ and intersecting the circle at $${A}$$ and $${B}$$. Then, the area of $$\Delta A{O}{B}$$ is
    Solution

    Given equation is $$x^{2}+y^{2}=2ax$$

    Centre $$=(a,0)$$ and radius $$=a$$

    Therefore, equation of line having slope $$=$$ $$\dfrac {-1}{2}$$ and passing through $$(4,0)$$
    $$y=\dfrac {-1}{2}(x-a)$$
    Line $$AB$$: $$2y+x=a$$  -(1)
    $$y=\dfrac {a+x}{2}$$
    $$d=\left | \dfrac {a}{\sqrt{5}} \right |$$
    So, area of $$\triangle AOB =\dfrac {1}{2}\times\ AB\ \times$$ (perpendicular distance of $$Q$$ from $$AB$$ )
    $$=\dfrac {1}{2}\times 2a\times \dfrac {a}{\sqrt{5}}$$
    $$=\dfrac {a^{2}}{\sqrt{5}}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now