Self Studies

Descriptive Statistics Test 43

Result Self Studies

Descriptive Statistics Test 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Choose the correct answers from the alternatives given.
    Directions for question 74 and 75: Study the following pie chart and answer the questions based on it.
    The following pie-chart shows the result of an examination of 360 students.
    The number of students who failed is

    Solution
    Number of the students failed = $$\frac{10}{100} \, \times$$ 360 = 36
  • Question 2
    1 / -0
    Let mean of $$100$$ data points be $$55$$ and variance be $$16$$ . Now if every data point is increased by $$2$$ units, then the sum of mean and standard deviation of new data point will be:
    Solution
    As the 2 units are added to every point on the data , there will be no change in the standard deviation .But mean will raise by 2units 
    Hence new mean = 57
    Given Variance=16
    Standard deviation = $$\sqrt{variance}=\sqrt{16}=4$$
    Sum of mean and standard deviation = $$57+4=61$$ units
  • Question 3
    1 / -0
    How many teachers are more than $$35$$ years old?

    Solution
    $$\Rightarrow$$  From given histogram we are going to form frequency distribution table:

    $$Ages$$
    $$(Years)$$ 
    $$No.\,of\,teachers$$ 
     $$20-25$$$$4$$ 
     $$25-30$$$$5$$ 
     $$30-35$$$$6$$ 
     $$35-40$$$$3$$ 
     $$40-45$$$$2$$ 
     $$45-50$$$$5$$ 
    $$\Rightarrow$$  From above table we can see, the number of teachers more than $$35$$ years old $$=3+2+5=10$$
  • Question 4
    1 / -0
    For $$X \rightarrow B (n, p), \,$$ if $$\, n = 25, E (x) = 10$$ , then S.D. $$(x) = $$
    Solution
    In the given Binomial Distribution,
    Number of trials, $$n=25$$
    Let probability of success $$=p$$

    Mean $$=E(x)=10$$

    $$\Rightarrow np=10$$

    $$25p=10$$

    $$p=\cfrac{10}{25}=\cfrac{2}{5}$$

    Then probability of failure, $$q=1-p=\cfrac{3}{5}$$

    Standard deviation for Binomial Distribution $$=\sqrt{npq}$$
    $$=\sqrt{25\times \cfrac{2}{5}\times \cfrac{3}{5}}$$
    $$=\sqrt{6}$$
    $$\approx 2.45$$
  • Question 5
    1 / -0
    Find variance of the following data.
    Class intervalFrequency
    $$4-8$$$$3$$
    $$8-12$$$$6$$
    $$12-16$$$$4$$
    $$16-20$$$$7$$
    Solution
    $$C.I$$ $$x_i$$ $$f_i$$ $$f_ix_i$$ $$(x_i-\overline{x})^2$$ $$f_i(x_i-\overline{x})^2$$ 
    $$4-8$$ $$6$$ $$3$$ $$18$$ $$49$$ $$147$$ 
    $$8-12$$ $$10$$ $$6$$ $$60$$ $$9$$ $$54$$ 
    $$12-16$$ $$14$$ $$4$$ $$56$$ $$1$$ $$4$$ 
    $$16-20$$ $$18$$ $$7$$ $$126$$ $$25$$ $$175$$ 
      $$\sum f_i=20$$ $$\sum f_ix_i=260$$ $$\sum(x_i-\overline{x})^2=84$$  $$\sum f_i(x_i-\overline{x})^2=380$$ 
    $$\Rightarrow$$  $$\overline{x}=\dfrac{\sum f_ix_i}{\sum f_i}=\dfrac{260}{20}=13$$
    $$\Rightarrow$$  $$Variance(\sigma^2)\dfrac{\sum f_i(x_i-\overline{x})^2}{\sum f_i}=\dfrac{380}{20}=19$$
  • Question 6
    1 / -0
    If $$\sum\limits_{i = 1}^9 {\left( {{x_i} - 5} \right) = 9}$$ and $$\sum\limits_{i = 1}^9 {{{\left( {{x_i} - 5} \right)}^2}}  = 45$$, then the standard deviation of the $$9$$ items $${x_1},{x_2},.....,{x_9}$$ is
    Solution
    S.D of $$xi-5$$ is

    $$\sigma =\sqrt{\dfrac{\sum_{i=1}^{9}(xi-5)^2}{9}-\left [ \dfrac{\sum_{i=1}^{9}(xi-5)^2}{9} \right ]^2}$$

    $$\sigma =\sqrt{5-1}=2$$
  • Question 7
    1 / -0
    Suppose a population $$A$$ has $$100$$ observations $$101,102,........,200$$ and another population $$B$$ has $$100$$ observations $$151,152......,250 $$. If $$V_{A}and V_{B}$$ represent the variences of the two populations respectively, then $$V_{A}/ V_{B}$$ is
    Solution

  • Question 8
    1 / -0
    If the sum of mean and variance of binomial distribution is 4.8 for 5 trials then
    Solution

  • Question 9
    1 / -0
    The mean deviation about the mean of the set of first $$n$$ natural numbers when $$n$$ is an odd number.
    Solution
    $$\overline { X } =\cfrac { \sum _{ i=1 }^{ n }{ i }  }{ n } =\cfrac { n(n+1) }{ 2n } =\cfrac { n+1 }{ 2 } $$
    $$\left| { d }_{ i } \right| =\left| r-\left( \cfrac { n+1 }{ 2 }  \right)  \right| $$$
    $$\sum { \left| { d }_{ i } \right|  } =\sum _{ r=1 }^{ n }{ \left| r-\left( \cfrac { n+1 }{ 2 }  \right)  \right|  } =\sum _{ r=1 }^{ \cfrac { n+1 }{ 2 }  }{ \cfrac { n+1 }{ 2 }  } =r+\sum _{ r=\cfrac { n+1 }{ 2 }  }^{ n }{ r-\left( \cfrac { n+1 }{ 2 }  \right)  } $$
    $$\Rightarrow \sum { = } \left( \cfrac { n+1 }{ 2 }  \right) \left( \cfrac { n+1 }{ 2 }  \right) -\cfrac { 1 }{ 2 } \left( \cfrac { n+1 }{ 2 }  \right) \left( \cfrac { n+3 }{ 2 }  \right) -\left( \cfrac { n+1 }{ 2 }  \right) \left( \cfrac { n+1 }{ 2 }  \right) +\cfrac { n+1 }{ 4 } \left( \cfrac { n+1 }{ 2 } +n \right) \quad $$
    $$\Rightarrow \cfrac { n+1 }{ 4 } \left( \cfrac { 3n+1 }{ 2 }  \right) -\cfrac { \left( n+1 \right) \left( n+3 \right)  }{ 8 } \Rightarrow \cfrac { n+1 }{ 4 } \left( \cfrac { 3n+1 }{ 2 } -\cfrac { n+3 }{ 2 }  \right) $$
    $$\cfrac { n+1 }{ 4 } \left( \cfrac { 2n-2 }{ 2 }  \right) =\cfrac { { n }^{ 2 }-1 }{ 4 } $$
  • Question 10
    1 / -0
    Find the standard deviation of 10 observation 111,211,311,....1011.
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now