Self Studies

Set Theory Test 12

Result Self Studies

Set Theory Test 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which of the following statements is true
    Solution
    Element/ number three is denoted by $$3$$ and not $$\{3\}$$.
    $$\{3\}$$ denotes a subset containing element 3. Hence
    $$\{3\}\subseteq \{1,3,5\}$$
    And 
    $$3\in \{1,3,5\}$$
  • Question 2
    1 / -0
    Let $$P = \{ x | x$$ is a multiple of $$3$$ and less than $$100 $$ ,$$x$$ $$\displaystyle \in $$ $$N \}$$
    $$Q = \{ x | x$$ is a multiple of $$10$$ and less than $$100$$, $$x$$ $$\displaystyle \in$$ $$N\}$$
    Solution
    P = $$\{ 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 ..., 60, ...,90, ....,99\}$$
    Q = $$\{10, 20, 30, 40, 50, 60, 70, 80, 90 \}$$
    Then looking at the multiple choices we get 
    $$P \displaystyle \cap Q$$= $$\{30, 60, 90\}$$
    $$\displaystyle \Rightarrow $$P $$\displaystyle \cap $$ Q = {x$$\displaystyle \mid $$ x is a multiple of 30 x$$\displaystyle \epsilon $$ N}
  • Question 3
    1 / -0
    Find the set of all solutions of the equation $$2^{\left | y \right |}-\left | 2^{y-1}-1 \right |=2^{y-1}+1$$, the solution includes
    Solution
    Here, $$2^{\left | y \right |}-\left | 2^{y-1}-1 \right |=2^{y-1}+1$$
    We know to define modulus, we have three cases as
    Case I: y< 0
    $$\Rightarrow $$   $$2^{-y}+\left ( 2^{y-1}-1 \right )=2^{y-1}+1$$
    $$\Rightarrow $$   $$2^{-y}=2^{1}$$          (as when y< 0 |y|=-y and $$\left | 2^{y-1}-1 \right |=-\left ( 2^{y-1}-1 \right )$$)
    Hence, y=-1, which is true when y< 0          (i)
    Case II: $$0\leq y< 1$$
    $$\Rightarrow $$   $$2^{y}+\left ( 2^{y-1}-1 \right )=2^{y-1}+1$$
    $$\Rightarrow $$   $$2^{y}=2$$          (as when $$0\leq y< 1$$ |y|=-y and $$\left | 2^{y-1}-1 \right |=-\left ( 2^{y-1}-1 \right )$$)
    $$\Rightarrow $$   $$y=1$$, which shows no solution as,
       $$0\leq y< 1$$          (ii)
    Case III: $$y\geq 1$$
    $$\Rightarrow $$   $$2^{y}-\left ( 2^{y-1}-1 \right )=2^{y-1}+1$$
    $$\Rightarrow $$   $$2^{y}=2^{y-1}+2^{y-1}$$
    $$\Rightarrow $$   $$2^{y}=2.2^{y-1}$$          (as when $$y\geq 0$$ |y|=y and $$\left | 2^{y-1}-1 \right |=\left ( 2^{y-1}-1 \right )$$)
    $$\Rightarrow $$   $$2^{y}=2^{y}$$, which is an identity therefor, it is true $$\forall y\geq 1$$          (iii)
    Hence, from Eqs. (i), (ii), (iii) the solution of set is $$\left \{ y: y\geq 1\cup y=-1 \right \}$$.
  • Question 4
    1 / -0
    If X and Y are two sets then $$\displaystyle X\cap (Y\cup X)'$$ equals:
    Solution
    We have $$\displaystyle X\cap \left ( Y\cup X \right )'=X\cap \left ( Y'\cap X' \right )$$
    = $$\displaystyle X\cap Y'\cap X'=X\cap X'\cap Y'$$
    = $$\displaystyle \phi \cap Y'= \phi $$
  • Question 5
    1 / -0
    If $$Q=\{ x:x=\cfrac { 1 }{ y },$$ where $$ y\in N \} $$, then
    Solution
    Since $$\cfrac{1}{y}\ne 0$$, $$\cfrac{1}{y}\ne 2$$, $$\cfrac{1}{y}\ne \cfrac{-2}{3}$$ [$$\because y\in N$$]
    $$\therefore \cfrac{1}{y}$$ can be $$1$$

    Ans: B
  • Question 6
    1 / -0
    $$\displaystyle A=\left\{ x:x\neq x \right\} $$ represents:
    Solution
    $$x=x$$ for all $$x$$
    Hence, there is no element in A. 
    A is an empty set .
    $$A=\{ \}$$ 
  • Question 7
    1 / -0
    Which of the following statements is true ?
    Solution
    $$\displaystyle 3\quad \subseteq \quad \left\{ 1,3,5 \right\} $$

    An element cannot be a subset of another set. Hence,false.

    $$\displaystyle 3\quad \in \quad \left\{ 1,3,5 \right\} $$

    $$3$$ lies in the set. Hence, true.

    $$\displaystyle \{ 3\} \quad \in \quad \left\{ 1,3,5 \right\} $$

    $$\{ 3\}$$ doesnot lie in the set. Hence, false.

    $$\displaystyle \{ 3,5\} \quad \in \quad \left\{ 1,3,5 \right\} $$

    $$\{ 3,5\}$$ doesnot lie in the set. Hence, false.

    Hence, option B.

  • Question 8
    1 / -0
    Given $$\displaystyle \xi $$ = {x : x is a natural number}
    A = {x : x is an even number x $$\displaystyle \in $$ N}
    B = {x : x is an odd number, x $$\displaystyle \in $$ N}
    Then $$\displaystyle (B\cap A)-(x-A)=....$$
    Solution
    $$A = \{2, 4, 6, 8, ........\}$$
    $$B = \{1, 3, 5, 7, .......\}$$
    $$\displaystyle B\cap A=\left \{ 2,4,6,8,..... \right \}\cap \left \{ 1,3,5,7,.... \right \}=\phi $$
    $$\displaystyle \xi -A=\left \{ 1,2,3,4,5,6,.... \right \}-\left \{ 2,4,6,8,.... \right \}=\left \{ 1,3,5,7,.... \right \}$$
    $$\displaystyle \therefore B\cap A-(\xi -A)=\phi -\left \{ 1,3,5,7,.... \right \}=\phi $$
  • Question 9
    1 / -0
    If n (A) = 120, N(B) = 250 and n (A - B) = 52, then find $$\displaystyle n(A\cup B)$$
    Solution
    $$\displaystyle n(A-B)=n(A)-n(A\cap B)$$
    $$\displaystyle \Rightarrow 52=120-n(A\cap B)$$
    $$\displaystyle \Rightarrow n(A\cap B)=120-52=68$$
    Now $$\displaystyle n(A\cup B)=n(A)+n(B)-n(A\cap B)$$
    $$\displaystyle =120+250-68$$
    $$=302$$
  • Question 10
    1 / -0
    The solution set of $$x+2<9$$ over a set of positive even integers is 
    Solution
    $$x+2<9$$
    $$x<7$$
    Since $$x$$ is even positive integer then $$x\in [2,7)$$.
    Hence the set of positive even integers which fall in the above set is 
    $$\{2,4,6\}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now