Self Studies

Set Theory Test 20

Result Self Studies

Set Theory Test 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$n(A)=10,n(B)=6$$ and $$(C)=5$$ for three disjoint sets $$A,B,C$$ then $$n(A\cup B\cup C)$$ equals
    Solution
    Since, $$A,B,C$$ are disjoint sets

    $$\therefore n(A\cup B\cup C)=n(A)+n(B)+n(C)$$

    $$=10+6+5=21$$
  • Question 2
    1 / -0
    The total number of subsets of {1, 2, 6, 7} are?
    Solution
    We have to find the total number of subsets of $$\{1,2,6,7\}$$.

    We know that, for a set containing $$n$$ elements, the total number of subsets is $$2^n$$.

    Consider $$\{1,2,6,7\}$$, wich has $$4$$ elements.

    $$\therefore$$ here $$n=4$$

    Hence total number of subsets is $$2^4=16$$.

    Thus the total number of subsets of $$\{1,2,6,7\}$$ is $$16$$.


  • Question 3
    1 / -0
    If U = {1, 3, 5, 7, 9, 11, 13}, then which of the following are subsets of U. 
    B = {2, 4} 
    A = {0}
    C = {1, 9, 5, 13}
    D = {5, 11, 1} 
    E = {13, 7, 9, 11, 5, 3, 1} 
    F = {2, 3, 4, 5} 
    Solution
    Given $$U=\{1,3,5,7,9,11,13\}, A=\{0\}, B=\{2,4\}, C=\{1,9,5,13\}, \\ D=\{5,11,1\}, E=\{13,7,9,11,5,3,1\}, F=\{2,3,4,5\}$$

    Now we have to find the subsets of $$U$$

    Consider $$A=\{0\}$$
    Since $$0\notin U, A\nsubseteq U$$

    Consider $$B=\{2,4\}$$
    Since $$2,4\notin U, B\nsubseteq U$$

    Consider $$C=\{1,9,5,13\}$$
    Since $$1,9,5,13\in U, C\subset U$$

    Consider $$D=\{5,11,1\}$$
    Since $$5,11,1\in U, D\subset U$$

    Consider $$E=\{13,7,9,11,5,3,1\}$$
    Since $$13,7,9,11,5,3,1\in U, E\subseteq U$$

    Consider $$F=\{2,3,4,5\}$$
    Since $$2,3,4\notin U, F\nsubseteq U$$

    Therefore $$C,D,E$$ are subsets of $$U$$.
  • Question 4
    1 / -0
    Let $$A$$ and $$B$$ be two events such that $$P\left( \overline { A\cup B }  \right) =\dfrac { 1 }{ 6 } ,$$ $$P\left( A\cap B \right) =\dfrac { 1 }{ 4 } $$ and $$P\left( \overline { A }  \right) =\dfrac { 1 }{ 4 } $$, where, $$\overline { A } $$ stands for complement of event $$A$$. Then, event $$A$$ and $$B$$ are
    Solution
    Given that, $$P\left( \overline { A\cup B }  \right) =\dfrac { 1 }{ 6 } ,$$ $$P\left( A\cap B \right) =\dfrac { 1 }{ 4 } ,$$ $$P\left( \overline { A }  \right) =\dfrac { 1 }{ 4 } $$

    $$P\left( \overline { A\cup B }  \right) =\dfrac { 1 }{ 6 } $$
    $$\Rightarrow 1-P\left( A\cup B \right) =\dfrac { 1 }{ 6 } $$
    $$\Rightarrow \left[ 1-P\left( A \right)  \right] -P\left( B \right) +P\left( A\cap B \right) =\dfrac { 1 }{ 6 } $$

    $$\Rightarrow P\left( \overline { A }  \right) -P\left( B \right) +P\left( A\cap B \right) =\dfrac { 1 }{ 6 } $$
    $$\Rightarrow \dfrac { 1 }{ 4 } -P\left( B \right) +\dfrac { 1 }{ 4 } =\dfrac { 1 }{ 6 } $$
    $$\Rightarrow P\left( B \right) =\dfrac { 2 }{ 4 } -\dfrac { 1 }{ 6 } $$

    $$\Rightarrow P\left( B \right) =\dfrac { 1 }{ 3 } $$
    and $$P\left( A \right) =1-P\left( \overline { A }  \right) =1-\dfrac { 1 }{ 4 } =\dfrac { 3 }{ 4 } $$

    Since, $$P\left( A\cap B \right) =P\left( A \right) \cdot P\left( B \right) $$, so the events $$A$$ and $$B$$ are independent events but not equal likely.
  • Question 5
    1 / -0
    Let $$S = \left \{(a, b): a, b\epsilon Z, 0\leq a, b\leq 18\right \}$$. The number of elements $$(x, y)$$ in $$S$$ such that $$3x + 4y + 5$$ is divided by $$19$$ is
    Solution
    Maximum value of $$3x+4y+5$$ will occur at $$(18,18)$$
    $$\Rightarrow$$ Maximum value$$=3\times18+4\times18+5=131$$

    And, the minimum value will occur at $$0,0$$
    $$\Rightarrow$$ Minimum value$$=3\times0+4\times0+5=5$$

    Now, the multiples of $$19$$ that lie between minimum and maximum value of $$3x+4y+5$$ are $$19,38,57,76,95,114$$

    $$\mathbf{Case 1-}$$ When $$3x+4y+5=19$$ 
    By trial and error the solutions for this case is-
    $$(2,2)$$
    $$\Rightarrow$$ The number of elements $$(x,y)$$ in $$S$$ for this case is $$1$$

    $$\mathbf{Case 2-}$$ When $$3x+4y+5=38$$ 
    By trial and error the solutions for this case are-
    $$(11,0);(7,3);(3,6)$$
    $$\Rightarrow$$ The number of elements $$(x,y)$$ in $$S$$ for this case are $$3$$

    $$\mathbf{Case 3-}$$ When $$3x+4y+5=57$$ 
    By trial and error the solutions for this case are-
    $$(16,1);(12,4);(8,7);(4,10);(0,13)$$
    $$\Rightarrow$$ The number of elements $$(x,y)$$ in $$S$$ for this case are $$5$$

    $$\mathbf{Case 4-}$$ When $$3x+4y+5=76$$ 
    By trial and error the solutions for this case are-
    $$(17,5);(13,8);(9,11);(5,14);(1,17)$$
    $$\Rightarrow$$ The number of elements $$(x,y)$$ in $$S$$ for this case are $$5$$

    $$\mathbf{Case 5-}$$ When $$3x+4y+5=95$$ 
    By trial and error the solutions for this case are-
    $$(18,9);(14,12);(10,15);(6,18)$$
    $$\Rightarrow$$ The number of elements $$(x,y)$$ in $$S$$ for this case are $$4$$

    $$\mathbf{Case 6-}$$ When $$3x+4y+5=114$$ 
    By trial and error the solutions for this case are-
    $$(15,16)$$
    $$\Rightarrow$$ The number of elements $$(x,y)$$ in $$S$$ for this case are $$1$$

    Therefore, the total number of elements $$(x,y)$$ in $$S$$ which are divisible by 19$$=1+3+5+5+4+1=19$$ 

    Hence the correct answer is option $$B$$
  • Question 6
    1 / -0
    If $$A=\left\{ a,b,c \right\} ,$$ $$B=\left\{ b,c,d \right\} $$ and $$C=\left\{ a,d,c \right\} $$, then $$\left( A-B \right) \times \left( B\cap C \right) $$ is equal to
    Solution
    Given that;
    $$A=\left\{ a,b,c \right\} ,$$ $$B=\left\{ b,c,d \right\} $$ and $$C=\left\{ a,d,c \right\} $$

    Now, $$A-B=\left\{ a,b,c \right\} -\left\{ b,c,d \right\} =\left\{ a \right\} $$
    and $$B\cap C=\left\{ b,c,d \right\} \cap \left\{ a,d,c \right\} $$
    $$=\left\{ c,d \right\} $$

    Therefore, $$ \left( A-B \right) \times \left( B\cap C \right) =\left\{ a \right\} \times \left\{ c,d \right\} $$
    $$=\left\{ \left( a,c \right) ,\left( a,d \right)  \right\} $$
  • Question 7
    1 / -0
    $$ A={1 , 11 , 21 , 31 ,....... , 541 , 551}$$. B is a subset of A such that $$ x+y\neq552$$ , for any $$x , y \epsilon B.$$ The maximum number of elements in B is
    Solution

  • Question 8
    1 / -0
    Let $$A,B$$ and $$C$$ be three events such that $$P(A)=0.3,P(B)=0.4,P(C)=0.8,P(A\cup B)=0.08,\quad P(A\cap C)=0.28,P(A\cap B\cap C)=0.09$$. If $$P(A\cup B\cup C)\ge 0.75$$, then $$P(B\cap C)$$ satisfies
    Solution
    Since $$P(A\cup B\cup C)\ge 0.75\quad $$
    $$\quad \therefore 0.75\le P(A\cup B\cup C)\le 1$$
    $$\Rightarrow 0.75\le P(A)+P(B)+P(C)-P(A\cap B)-P(B\cap C)-P(A\cap C)+P(A\cap B\cap C)\le 1\quad \quad $$
    $$\Rightarrow 0.75\le 1.23-P(B\cap C)\le 1\Rightarrow -0.48\le -P(B\cap C)\le -0.23$$
    $$\Rightarrow 0.23\le P(B\cap C)\le 0.48\quad$$
  • Question 9
    1 / -0
    If $$a, b, c, d$$ are four distinct numbers chosen from the set $$\left \{1, 2, 3, ..., 9\right \}$$, then the minimum value of $$\dfrac {a}{b} + \dfrac {c}{d}$$ is
    Solution
    To minimize the value of $$\dfrac{a}{b}+\dfrac{c}{d}$$, $$b$$ and $$d$$ must highest numbers chosen from the set and $$a$$ and $$c$$ must be the lowest numbers of given set.
    Therefore, $$b=9,\, d=8,\, a=2$$ and $$c=1$$.
    Thus, the minimum value for $$\dfrac{a}{b}+\dfrac{c}{d}$$ $$=\dfrac{2}{9}+\dfrac{1}{8}=\dfrac{25}{72}$$
  • Question 10
    1 / -0
    The relation R defined on set A = {1, 2, 3, 4, 5} is defined by R = $${(x, y): |x^2 - y^2| > 4}$$. Which of the following could be the range of relation R?
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now