Self Studies

Set Theory Test 26

Result Self Studies

Set Theory Test 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If m$$=$$ number of distinct rational numbers p/q $$\in (0, 1)$$ such that p, q $$\in \{1, 2, 3, 4, 5\}$$ and n$$=$$ number of onto mappings from $$\{1, 2, 3\}$$ onto $$\{1, 2\}$$, then $$m-n$$ is?
    Solution

  • Question 2
    1 / -0
    In a universal set x,$$n\left( x \right) = 50$$ ,$$n\left( A \right) = 35$$ , $$n\left( B \right) = 20$$ , $$n\left( {A' \cap B'} \right) = 5$$ ,then $$n\left( {A \cup B} \right),n\left( {A \cap B} \right)$$ are repsectively 
    Solution
    Given $$n\left(X\right) = 50$$,
    $$n\left(A\right) = 35$$,
    $$n\left(B\right) = 20$$
    $$n\left({A}^{\prime}\cap\,{B}^{\prime}\right) = 5$$

    $$(i)\,n\left(A \cup B\right)$$  
    $$n\left({A}^{\prime}\cap\,{B}^{\prime}\right) = n\left(X\right) - n\left(A\cup\,B\right)$$
    $$n\left(A\cup\, B\right) = n\left(X\right) - n\left({A}^{\prime}\cap\,{B}^{\prime}\right)$$
    $$n\left(A\cup\, B\right) = 50 - 5= 45$$

    $$(ii) n\left(A \cap B\right)$$
    $$n\left(A\cup B\right) = n\left(A\right) + n\left(B\right) - n\left(A\cap B\right)$$
    $$n\left(A\cap\, B\right) = n\left(A\right) + n\left(B\right) - n\left(A\cup\, B\right)$$
    $$n\left(A\cap\, B\right) = 35 + 20 - 45= 10$$
  • Question 3
    1 / -0
    If  $$A$$  and  $$B$$  are two non empty sets then  $$( A \cup B ) ^ { C } = ?$$
    Solution
    If A and B are two no empty sets then $${ \left( A\cup B \right)  }^{ C }={ A }^{ C }\cap { B }^{ C }$$
  • Question 4
    1 / -0
    Let $$S={1,2,3,.....10}$$ and $$P={1,2,3,4,5}$$ The number of subsets $$'Q'$$ of $$S$$ such that $$p \cup Q=S$$, are.....
  • Question 5
    1 / -0
    If 'p' is true and 'q' is false, then which of the following statement is not true?
    Solution

  • Question 6
    1 / -0
    The number of subsets $$ R$$ of $$P=(1,2,3,....,9)$$ which satisfies the property "There exit integers a<b<c with a$$\in $$R, b$$\in $$R,c$$\in $$R" is
    Solution
    Every subset of P containing at least 3 elements from P will always satisfy the required property since each number is distinct in the set P. 

    So, Total no. of ways = $$^{9}C_3 + ^{9}C_4 + .... + ^{9}C_9 $$
    $$= (^{9}C_0 + ^{9}C_1 + ..... + ^{9}C_9) - ^{9}C_0 - ^{9}C_1 - ^{9}C_2$$
    $$=2^9 - 46$$
    $$=512 -46$$
    $$=466$$
  • Question 7
    1 / -0
    If the number of $$5$$ elements subsets of the set $$A\left\{\ a_{1},a_{2}.....a_{20}\right\}$$ of $$20$$ distinct elements is $$k$$ times the number of $$5$$ elements subsets containing $$a_{4}$$, then $$k$$ is 
    Solution
    No of $$5$$ elements subset $$=^{20}C_{5}=\dfrac {20!}{15! \, 15!}=\dfrac {20 \times 19\times 18\times 17\times 16\times 15!}{15!  \,  5\times 4\times 3\times 2\times 1}=15504$$

    No of $$5$$ elements subset containing $$a_{4}$$ $$=^{19}C_{4}=\dfrac {19!}{4! \, 15!}$$


    $$\Rightarrow \dfrac {20!}{15! \, 15!}=k\dfrac {19!}{4!\, 15!}$$

    $$\Rightarrow \dfrac {20\times 19!}{5\times 4!}=k\dfrac {19!}{4!}$$

    $$\Rightarrow k=4$$

  • Question 8
    1 / -0
    If $$p$$ and $$q$$ are two proposition, then $$\sim(p\leftrightarrow q)$$ is 
    Solution

  • Question 9
    1 / -0
    If two sets $$P$$ and $$Q,n\left(P\right)=5,n\left(Q\right)=4$$ then $$n\left(P\times Q\right)=$$
    Solution
    $$\begin{aligned} n(P \times Q) &=n(P) \times n(Q) \\ &=5 \times 4 \\ &=20 \end{aligned}$$
    $$\therefore$$ option $$A$$ is correct.
  • Question 10
    1 / -0
    The statement that is true among the following is 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now