Self Studies

Relations Test 1

Result Self Studies

Relations Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let N denote the set of all natural numbers. Define two binary relations on N as $$R_1=\{(x, y)\epsilon N\times N : 2x+y=10\}$$ and $$R_2=\{(x, y)\epsilon N\times N:x+2y=10\}$$. Then.
    Solution
    Define two binary relations on N as $$R_1=\{(x, y)\epsilon N\times N : 2x+y=10\}$$ and $$R_2=\{(x, y)\epsilon N\times N:x+2y=10\}$$
    From $$R_{1}$$, $$2x+y=10$$ and $$x, y\in N$$
    So, possible values for $$x$$ and $$y$$ are:
    $$x=1, y=8$$  i.e $$(1,8)$$
    $$x=2, y=6$$  i.e $$(2,6)$$
    $$x=3, y=4$$  i.e $$(3,4)$$
    $$x=4, y=2$$  i.e $$(4,2)$$
    $$R_{1}=\{(1,8),(2,6),(3,4),(4,2)\}$$
    Therefore, Range of $$R_{1}$$ is $$\{2,4,6,8\}$$
    $$R_{1}$$ is not symmetric
    Also, $$R_{1}$$ is not transitive because $$(3,4),(4,2)\in R_{1}$$ but $$(3,2) \notin R_{1}$$
    Thus, options A,B and D are incorrect.
    From $$R_{2}$$, $$x+2y=10$$ and $$x, y\in N$$
    So, possible values for $$x$$ and $$y$$ are:
    $$x=8, y=1$$  i.e $$(8,1)$$
    $$x=6, y=2$$  i.e $$(6,2)$$
    $$x=4, y=3$$  i.e $$(4,3)$$
    $$x=2, y=4$$  i.e $$(2,4)$$
    $$R_{2}=\{(8,1),(6,2),(4,3),(2,4)\}$$
    Therefore, Range of $$R_{2}$$ is $$\{1,2,3,4\}$$
    $$R_{2}$$ is not symmetric
    Hence, option C is correct.
  • Question 2
    1 / -0
    Consider the following two binary relations on the set $$A = \left \{a, b, c\right \} : R_{1} = \left \{(c, a), (b, b), (a, c), (c, c), (b, c), (a, a)\right \}$$
    and $$R_{2} = \left \{(a, b), (b, a), (c, c), (c, a), (a, a), (b, b), (a, c)\right \}$$ Then
    Solution
    $$R_2$$ is symmetric as for any $$(a_1, a_2) \in R_2$$, we have $$(a_2, a_1) \in R_2$$.
    But $$R_1$$ is not symmetric as $$(b,c) \in R_1$$ but $$(c,b) \notin R_1$$ 

    For checking transitivity, we observe for $$R_2$$ that $$(b,a) \in R_2$$, $$(a,c) \in R_2$$ but $$(b,c) \notin R_2$$. 
    Similarly, for $$R_1$$, $$(b,c) \in R_1$$, $$(c,a) \in R_1$$ but $$(b,a) \notin R_1$$. So neither $$R_1$$ nor $$R_2$$ is transitive. 
    So, the correct answer is option A.
  • Question 3
    1 / -0
    Let  $$S = \{ 1,2,3 , \ldots , 100 \} .$$  The number of non-empty subsets  $$A$$  of  $$S$$  such that the product of elements in  $$A$$  is even is :-
    Solution
    $$\mathrm { S } = \{ 1,2,3 - \ldots - 100 \}$$

    = Total non empty subsets-subsets with product of element is odd

    $$= 2 ^ { 100 } - 1 - 1 \left[ \left( 2 ^ { 50 } - 1 \right) \right]$$

    $$= 2 ^ { 100 } - 2 ^ { 50 }$$

    $$= 2 ^ { 50 } \left( 2 ^ { 50 } - 1 \right)$$
  • Question 4
    1 / -0
    $$A$$ and $$B$$ are two sets having $$3$$ and $$4$$ elements respectively and having $$2$$ elements in common. The number of relations which can be defined from $$A$$ to $$B$$ is:
    Solution
    Given:
    $$n(A) = 3 = m$$
    $$n(B) = 4 = n$$

    Number of relation 
    $$= { 2 }^{ mn }$$
    $$= { 2 }^{ 3\times 4 }$$
    $$= { 2 }^{ 12 }$$.
  • Question 5
    1 / -0
    Let $$R$$ be a relation from a set $$A$$ to a set $$B$$, then:
    Solution
    $$R : $$$$A\rightarrow B$$
    then $$R$$ is a subset $$A\times B$$
     $$\therefore$$ $$R\quad \subseteq \quad A\times B$$
  • Question 6
    1 / -0
    Let $$x$$ be a real number $$\left [ x \right ]$$ denotes the greatest integer function, and $$\left \{ x \right \}$$ denotes the fractional part and $$(x)$$ denotes the least integer function,then solve the following.
    $$\left [ 2x \right ]-2x=\left [ x+1 \right ]$$
    Solution
    $$\left [ 2x \right ]-2x=\left [ x+1 \right ]$$ 

    $$\Rightarrow \left \{2x\right\}=\left [ x \right ]+1$$ (i)

    But range of fractional part is $$[0,1)$$ 

    $$\Rightarrow 0\leq [x]+1 < 1$$

    $$\Rightarrow -1 \leq [x] < 0$$

    $$ \Rightarrow -1 \leq x < 0$$

    $$\Rightarrow [x] =-1$$

    Thus (i) becomes $$\{2x\} =0 $$ it means that fraction part is zero for that,

    $$\therefore x = -\cfrac{1}{2}, -1$$ in $$[-1,0)$$
  • Question 7
    1 / -0
    If $$A = \{x, y\}$$ and $$B = \{3, 4, 5, 7, 9\}$$ and $$C = \{4, 5, 6, 7\}$$, find $$\displaystyle A\times (B\cap C)$$
    Solution
    $$\displaystyle B\cap C=\left \{ 3,4,5,7,9 \right \}\cap \left \{ 4,5,6,7 \right \}=\left \{ 4,5,7 \right \}$$
    $$\displaystyle \therefore A\times (B\cap C)=\left \{ x,y \right \}\times \left \{ 4,5,7 \right \}$$
    =$$\displaystyle \left \{ (x,4),(x,5),(x,7),(y,4),(y,5),(y,7) \right \}$$
  • Question 8
    1 / -0
    $$\displaystyle x^{2} = xy$$ is a relation (defined on set R) which is
     
    Solution
    Given , R:$$x^{2}=xy$$
    Symmetric: If $$ (x,x) \in $$ R
    $$x^{2}=x \times x$$
    $$x^{2}=x^{2},(x,x) \in$$ R
    So the relation is symmetric
  • Question 9
    1 / -0
    Which one of the following relations on R (set of real numbers) is an equivalence relation 
    Solution
    $$a R_1  b  \iff |a| = |b| $$

    $$a=b$$

    $$R_1 $$is a reflexive symmetric and transitive.( as we know $$a=b$$)

    $$\therefore (a,a) $$ is present.

    $$\therefore (a,b) (b,a)$$ will also be present.

    So it is an equivalence relation .


  • Question 10
    1 / -0
    If $$\displaystyle A\prime $$ is symmetric to A and $$\displaystyle B\prime $$ is symmetric to B with respect to a line of symmetry, then
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now