Given: N denote the set of natural numbers and R a reation on $$N\times N$$ A) $$(a, b) R (c, d)$$ id $$ad(b+c)=bc(a+d)$$
B) $$(a, b) R (c, d)$$ if $$(a+d) = (b+c)$$
C) $$(a, b) R (c, d)$$ if $$ad = bc$$.
Consider A $$(a, b) R (c, d)$$ if $$ad(b+c) = bc (a+d)$$
1) Reflexive
Let $$(a+b) \in N\times N$$
and $$(a,b)R(a,b)$$
$$\Rightarrow ab(b+a) = ba(a+b)$$
$$\Rightarrow ab(b+a) = ab(b+a)$$
$$\Rightarrow R$$ is reflective .....(I)
2) Symmetric
Let $$(a, b) R ( c,d)$$
where $$(a, v) \& (c,d) \in N$$
$$\Rightarrow ad(b+c) = bc(a+d)$$
$$=bc(a+d)=ad(b+c)$$
$$\Rightarrow cb(d+a)=da(c+b)$$
$$\Rightarrow (c,d)R(a,b)$$
$$\Rightarrow R$$ is symmetric ...(II)
3) Transitive
Let $$(a,b), (c,d)$$ and $$(c,f) \in N \times N$$
consider,
$$(a, b)R (c,d)$$
$$\Rightarrow ad (b+c) = bc(a+d)$$
$$\Rightarrow abd + adc = abc + bcd$$
$$\Rightarrow abd - abc = bcd - adc$$
$$\Rightarrow ab(d-c) = dc(b-a)$$
$$\Rightarrow \dfrac{ab}{(b-a)} = \dfrac{cd}{d-c}$$ ...(1)
Now, consider,
$$(c,d)R(e,f)$$
$$\Rightarrow cf(d+e) = dc(e+f)$$
$$\Rightarrow cfd + cef = ced + edf$$
$$\Rightarrow cfd - ced = edf + cef$$
$$\Rightarrow cd(fe) = ef(d-c)$$
$$\Rightarrow \dfrac{cd}{d-c} = \dfrac{ef}{f-e} $$ ....(2)
from (1) and (2)
$$\dfrac{ab}{b-c} = \dfrac{cf}{f-e}$$
$$\Rightarrow ab (f-e) = ef(b-a)$$
$$\Rightarrow abf -abe = efb - efa$$
$$\Rightarrow abf + efa = efb + abe$$
$$\Rightarrow af(b+e) = be (f+a)$$
$$\Rightarrow (a, b) R (e,f)$$ (by definition of R)
$$\Rightarrow R$$ is trasitive .....(III)
from (I), (II) and (III)
$$R$$ is on equivalence Relation or $$N \times N$$.
Consider B $$(a, b) R (c, d)$$ if $$(a+d) = (b+c)$$
1) Reflexive
Let $$(a+b) \in N\times N$$
and $$(a,b)R(a,b)$$
$$\Rightarrow (a+b) = (b+a)$$
$$\Rightarrow (a+b) = (a+b)$$
$$\Rightarrow R$$ is reflective .....(IV)
2) Symmetric
Let $$(a, b) R ( c,d)$$
where $$(a, b) \& (c,d) \in N\times N$$
$$\Rightarrow (a+d) = (b+c)$$
$$\Rightarrow (b+c)=(a+d)$$
$$\Rightarrow (c+b)=(d+a)$$
$$\Rightarrow (c,d)R(a,b)$$
$$\Rightarrow R$$ is symmetric ...(V)
3) Transitive
Let $$(a,b), (c,d)$$ and $$(c,f) \in N \times N$$
If $$(a,b)\&(c,d)$$ and $$(c,d)\& (c,f)$$
then $$(a,b)R(c,f)$$
consider,
$$(a, b)R (c,d)$$
$$\Rightarrow (a+d) = (b+c)$$ by definition by $$R$$
$$\Rightarrow a-b = c-d$$ ....(3)
Now,
$$(c,d)R(e,f)$$
$$\Rightarrow (c+f) = (d+e)$$ by definition of $$x$$
$$\Rightarrow c-d + e-f $$ ...(4)
from (3) and (4)
$$a-b=e-f$$
$$\Rightarrow a+f = e+b$$
$$\Rightarrow (a,b) R(e,f)$$
$$\Rightarrow R$$ is transitive ...(VI)
from (IV), (V), (VI) we have,
$$R$$ is an equivalence reaction.$$\Rightarrow abf + efa = efb + abe$$
$$\Rightarrow af(b+e) = be (f+a)$$
$$\Rightarrow (a, b) R (e,f)$$ (by definition of R)
$$\Rightarrow R$$ is trasitive .....(III)
from (I), (II) and (III)
$$R$$ is on equivalence Relation or $$N \times N$$.
Consider C $$(a, b) R (c, d)$$ if $$ad = bc$$
1) Reflexive
Let $$(a,b) \in N\times N$$
and $$(a,b)R(a,b)$$
$$\Rightarrow ab = ba$$
$$\Rightarrow ab = ab$$
$$\Rightarrow R$$ is reflective .....(VII)
2) Symmetric
Let $$(a, b) R ( c,d)$$ where $$(a, b), (c,d) \in N\times N$$
$$\Rightarrow ad=bc$$
$$\Rightarrow bc=ad$$
$$\Rightarrow cb=da$$
$$\Rightarrow (c,d)R(a,b)$$
$$\Rightarrow R$$ is symmetric ...(VIII)
3) Transitive
Let $$(a,b), (c,d)$$ and (c,f) \in N \times N$$
If $$(a,b)R(c,d)$$ and $$(c,d)R (c,f)$$
then $$(a,b)R(c,f)$$
consider,
$$(a, b)R (c,d)$$
$$\Rightarrow ad = bc$$ by definition by $$R$$
$$\Rightarrow \dfrac{a}{b} = \dfrac{c}{d}$$ ....(5)
Consider,
$$(c,d)R(e,f)$$
$$\Rightarrow (cf) = (de)$$ by definition of $$R$$
$$\Rightarrow \dfrac{c}{d} = \dfrac{e}{f} $$ ...(6)
from (5) and (6) we have,
$$\dfrac{a}{b}=\dfrac{e}{f}$$
$$\Rightarrow R$$ is transitive ...(IX)
from (VII), (VIII), (IX) we have,
$$R$$ is an equivalence reaction.
$$\Rightarrow A, B, C$$ all are equivalence relation.
$$\therefore$$ option all of the above is correct answer.