Self Studies

Relations Test 12

Result Self Studies

Relations Test 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A $$\times$$ (B - C) =
    Solution

  • Question 2
    1 / -0
    If A $$=$$ {1, 2}, B $$=$$ {3, 4}, then A$$\times$$B $$=$$
    Solution

    $${\textbf{Step -1: Define the Cartesian product.}}$$

                   $${\text{Cartesian product: If }}A{\text{ and }}B{\text{ are two non empty sets, then }}$$ 

                   $${\text{Cartesian product }}A \times B{\text{ is set of all ordered pairs }}\left( {a,b} \right)$$ $${\text{such that }}a \in A{\text{ and }}b \in B.$$

    $${\textbf{Step -2: Find the Cartesian product of given sets.}}$$

                   $${\text{We have given,}}$$ 

                   $$A = \left\{ {1,2} \right\}$$ $${\text{and}}$$ $$B = \left\{ {3,4} \right\}$$

                   $${\text{So,}}$$ $$A \times B = \left\{ {\left( {1,3} \right),\left( {1,4} \right),\left( {2,3} \right),\left( {2,4} \right)} \right\}$$

    $${\textbf{Hence, option A. }}\left\{ \mathbf{\left( {1,3} \right),\left( {1,4} \right),\left( {2,3} \right),\left( {2,4} \right)} \right\}$$ $${\textbf{is correct answer.}}$$

  • Question 3
    1 / -0
    If $$ABC\sim PQR$$, then AB:PQ =
    Solution

  • Question 4
    1 / -0
    Let $$A=\left \{ 1, 2, 3 \right \}$$. Then number of equivalence relations containing (1, 2) is:
    Solution
    Observe that 1 is related to 2. So, we have two possible cases.

    Case 1: When 1 is not related to 3, then the relation. $$R_{1}=\left \{ (1, 1),(1, 2),(2, 1),(2, 2),(3, 3) \right \}$$ is the only equivalence relation containing $$(1, 2)$$.

    Case 2: When 1 is related to 3, then $$A \times A$$ = $$\{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)\}$$ is the only equivalence relation containing $$ (1,2) $$

    $$\therefore $$ There are two required equivalence relations.
  • Question 5
    1 / -0
    Let A and B be finite sets containing m and n elements respectively. The number of relations that can be defined from A and B is:
    Solution
    Here, $$O(A)=m$$ and $$O(B)=n$$.
    Hence $$O(A×B)=mn$$
    Since every subset of $$A×B$$ is a relation from $$A$$ to $$B$$, therefore, number of relations from A to B is equal to the number of the subsets of $$A×B$$, i.e.,  $$2^{m{n}}$$
  • Question 6
    1 / -0
    Which of the following are not equivalence relations on I?
    Solution
    For Option $$[A]$$
    aRb if $$a+b$$ is an even integer
    $$Reflexive:$$ $$a+a=2a\Rightarrow$$ is $$even$$ $$number$$
    $$Symmetric$$ $$a+b=b+a\Rightarrow$$ is $$even$$ $$number$$
    $$Transitive$$ $$a+b=2k;b+c=2p$$ then $$a+c=2k+2p-2b=2(k+p-b)\Rightarrow$$ is an $$even$$ $$number$$
    $$\therefore$$ this is a equivalence relation 

    For option $$[B]$$
    aRb if $$a-b$$ is an even number
    $$Reflexive:$$ $$a-a=0\Rightarrow$$  is $$even$$ $$number$$
    $$Symmetric$$ $$a-b=2k;b-a=-2k\Rightarrow$$ is $$even$$ $$number$$
    $$Transitive$$  $$a-b=2k;b-c=2p$$
                             $$a-b+b-c=a-c=2k+2p=2(k+p)$$  is $$even$$ $$number$$
    $$\therefore$$ this is a equivalence relation 

    For option $$[C]$$
    $$Reflexive:$$ $$a\not <a\Rightarrow$$ $$not$$ $$Reflexive:$$
    $$Symmetric:$$ $$a<b$$ but $$b\not< a$$ $$\Rightarrow$$ $$not$$ $$Symmetric$$
    $$Transitive$$ $$a<b;b<c\Rightarrow a<c$$ $$\Rightarrow$$ $$Transitive$$
    $$\therefore$$ not a Equivalence relation

    For option $$[D]$$
    aRb if a=b $$\Rightarrow$$ $$Reflexive,Symmetric,Transitive$$
    $$\therefore$$ this is a equivalence relation 

     
                              
  • Question 7
    1 / -0
    Let R be a reflexive relation on a finite set A having n elements, and let there be m ordered pairs in R. Then:
    Solution
    The set consists of n elements and for relation to be reflexive it must have at least n ordered pairs. It has m ordered pairs therefore $$ m≥n$$.
  • Question 8
    1 / -0
    If $$X=\left \{ 1, 2, 3, 4, 5 \right \}$$ and $$Y=\left \{ 1, 3, 5, 7, 9 \right \}$$, determine which of the following sets represent a relation and also a mapping.
    Solution
     $$R_1={(1,3),(2,4),(3,5),(4,6),(5,7)}$$
    Since $$4$$ and $$6$$ do not belong to $$Y$$
    $$(2,4),(4,6)∉R_1$$
    $$R_1={(1,3),(3,5),(5,7)}⊂A×B$$
    Hence $$R_1$$ is a relation but not a mapping as the elements $$2$$ and $$4$$ do not have any image.
    $$R_2$$ :  It is certainly a mapping and since every mapping is a relation, it is a relation as well.
    $$R_3$$: It is a relation being a subset of $$A×B$$ but the elements $$1$$ and $$3$$ do not have a unique image and hence it is not mapping.
    $$R_4$$ : It is both a mapping and a relation. Each element in A has a unique image. It is also one-one and onto mapping and hence a bijection
  • Question 9
    1 / -0
    Let N denote the set of all natural numbers and R a relation on $$N\times N$$. Which of the following is an equivalence relation?
    Solution
    Given: N denote the set of natural numbers and R a reation on $$N\times N$$
    A) $$(a, b) R (c, d)$$ id $$ad(b+c)=bc(a+d)$$
    B) $$(a, b) R (c, d)$$ if $$(a+d) = (b+c)$$
    C) $$(a, b) R (c, d)$$ if $$ad = bc$$.

    Consider A $$(a, b) R (c, d)$$ if $$ad(b+c) = bc (a+d)$$
    1) Reflexive 
    Let $$(a+b) \in N\times N$$
    and $$(a,b)R(a,b)$$
    $$\Rightarrow ab(b+a) = ba(a+b)$$
    $$\Rightarrow ab(b+a) = ab(b+a)$$
    $$\Rightarrow R$$ is reflective       .....(I)

    2) Symmetric
    Let $$(a, b) R ( c,d)$$
    where $$(a, v) \& (c,d) \in N$$
    $$\Rightarrow ad(b+c) = bc(a+d)$$
    $$=bc(a+d)=ad(b+c)$$
    $$\Rightarrow cb(d+a)=da(c+b)$$
    $$\Rightarrow (c,d)R(a,b)$$
    $$\Rightarrow R$$ is symmetric      ...(II)

    3) Transitive
    Let $$(a,b), (c,d)$$ and $$(c,f) \in N \times N$$
    consider,
    $$(a, b)R (c,d)$$
    $$\Rightarrow ad (b+c) = bc(a+d)$$
    $$\Rightarrow abd + adc = abc + bcd$$
    $$\Rightarrow abd - abc = bcd - adc$$
    $$\Rightarrow ab(d-c) = dc(b-a)$$
    $$\Rightarrow \dfrac{ab}{(b-a)} = \dfrac{cd}{d-c}$$      ...(1)
    Now, consider,
    $$(c,d)R(e,f)$$
    $$\Rightarrow cf(d+e) = dc(e+f)$$
    $$\Rightarrow cfd + cef = ced + edf$$
    $$\Rightarrow cfd - ced = edf + cef$$
    $$\Rightarrow cd(fe) = ef(d-c)$$
    $$\Rightarrow \dfrac{cd}{d-c} = \dfrac{ef}{f-e} $$      ....(2)
    from (1) and (2)
    $$\dfrac{ab}{b-c} = \dfrac{cf}{f-e}$$ 
    $$\Rightarrow ab (f-e) = ef(b-a)$$
    $$\Rightarrow abf -abe = efb - efa$$
    $$\Rightarrow abf + efa = efb + abe$$
    $$\Rightarrow af(b+e) = be (f+a)$$
    $$\Rightarrow (a, b) R (e,f)$$    (by definition of R)
    $$\Rightarrow R$$ is trasitive       .....(III)
    from (I), (II) and (III)
    $$R$$ is on equivalence Relation or $$N \times N$$.

    Consider B $$(a, b) R (c, d)$$ if $$(a+d) = (b+c)$$
    1) Reflexive 
    Let $$(a+b) \in N\times N$$
    and $$(a,b)R(a,b)$$
    $$\Rightarrow (a+b) = (b+a)$$
    $$\Rightarrow (a+b) = (a+b)$$
    $$\Rightarrow R$$ is reflective       .....(IV)

    2) Symmetric
    Let $$(a, b) R ( c,d)$$
    where $$(a, b) \& (c,d) \in N\times N$$
    $$\Rightarrow (a+d) = (b+c)$$
    $$\Rightarrow (b+c)=(a+d)$$
    $$\Rightarrow (c+b)=(d+a)$$
    $$\Rightarrow (c,d)R(a,b)$$
    $$\Rightarrow R$$ is symmetric      ...(V)

    3) Transitive
    Let $$(a,b), (c,d)$$ and $$(c,f) \in N \times N$$
    If $$(a,b)\&(c,d)$$ and $$(c,d)\& (c,f)$$
    then $$(a,b)R(c,f)$$
    consider,
    $$(a, b)R (c,d)$$
    $$\Rightarrow (a+d) = (b+c)$$   by definition by $$R$$
    $$\Rightarrow a-b = c-d$$      ....(3)
    Now, 
    $$(c,d)R(e,f)$$
    $$\Rightarrow (c+f) = (d+e)$$ by definition of $$x$$
    $$\Rightarrow c-d + e-f $$     ...(4)
    from (3) and (4)
    $$a-b=e-f$$ 
    $$\Rightarrow a+f = e+b$$
    $$\Rightarrow (a,b) R(e,f)$$
    $$\Rightarrow R$$ is transitive     ...(VI)
    from (IV), (V), (VI) we have,
    $$R$$ is an equivalence reaction.$$\Rightarrow abf + efa = efb + abe$$
    $$\Rightarrow af(b+e) = be (f+a)$$
    $$\Rightarrow (a, b) R (e,f)$$    (by definition of R)
    $$\Rightarrow R$$ is trasitive       .....(III)
    from (I), (II) and (III)
    $$R$$ is on equivalence Relation or $$N \times N$$.

    Consider C $$(a, b) R (c, d)$$ if $$ad = bc$$
    1) Reflexive 
    Let $$(a,b) \in N\times N$$
    and $$(a,b)R(a,b)$$
    $$\Rightarrow ab = ba$$
    $$\Rightarrow ab = ab$$
    $$\Rightarrow R$$ is reflective       .....(VII)

    2) Symmetric
    Let $$(a, b) R ( c,d)$$ where $$(a, b), (c,d) \in N\times N$$
    $$\Rightarrow ad=bc$$
    $$\Rightarrow bc=ad$$
    $$\Rightarrow cb=da$$
    $$\Rightarrow (c,d)R(a,b)$$
    $$\Rightarrow R$$ is symmetric      ...(VIII)

    3) Transitive
    Let $$(a,b), (c,d)$$ and (c,f) \in N \times N$$
    If $$(a,b)R(c,d)$$ and $$(c,d)R (c,f)$$
    then $$(a,b)R(c,f)$$
    consider,
    $$(a, b)R (c,d)$$
    $$\Rightarrow ad = bc$$   by definition by $$R$$
    $$\Rightarrow \dfrac{a}{b} = \dfrac{c}{d}$$      ....(5)
    Consider, 
    $$(c,d)R(e,f)$$
    $$\Rightarrow (cf) = (de)$$ by definition of $$R$$
    $$\Rightarrow \dfrac{c}{d} = \dfrac{e}{f} $$     ...(6)
    from (5) and (6) we have,
    $$\dfrac{a}{b}=\dfrac{e}{f}$$ 
    $$\Rightarrow R$$ is transitive     ...(IX)
    from (VII), (VIII), (IX) we have,
    $$R$$ is an equivalence reaction.
    $$\Rightarrow A, B, C$$ all are equivalence relation.
    $$\therefore$$ option all of the above is correct answer.
  • Question 10
    1 / -0
    Let A be a finite set containing n distinct elements. The number of relations that can be defined on A is:
    Solution
    Since $$A$$ contains $$n$$ distinct elements, therefore, $$A×A$$ contains $$n×n=n^2$$ distinct elements. since every subset of $$A×A$$ is a relation on $$A$$., therefore, number of relations on $$A$$ is equal to the order of the power set of $$A×A$$, is equal to the order of the power set of $$A×A$$, i.e., $$2^{n^{2}}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now