Self Studies

Relations Test 16

Result Self Studies

Relations Test 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Given $$\displaystyle A=\left \{ 2, 3 \right \},B=\left \{ 4, 5 \right \},C=\left \{ 5, 6 \right \},$$ find $$\displaystyle A\times \left ( B\cap C \right )=.........$$
    Solution
    $$\displaystyle A=\left \{ 2, 3 \right \},B=\left \{ 4, 5 \right \},C=\left \{ 5, 6 \right \}$$
    $$\displaystyle B\cap C=\left\{5\right\}$$
    Now, $$\displaystyle A\times \left ( B\cap C \right )=\left \{ \left ( 2, 5 \right ),\left ( 3, 5 \right ) \right \}$$
    Hence, option B.

  • Question 2
    1 / -0
    $$A$$ and $$B$$ are two sets having $$3$$ and $$5$$ elements respectively and having $$2$$ elements in common. Then the number of elements in $$\displaystyle A\times B$$ is
    Solution
     $$\displaystyle \left ( a\times b \right )$$ is different from $$\displaystyle \left ( b\times a \right )$$
    Thue if $$\displaystyle A=

    \left \{ a,b,c \right \}, B=\left \{ a, b, d, e, f \right \}$$
    then $$A \times B$$ will contain $$3\times 5 =15$$ elements.
  • Question 3
    1 / -0
    Let $$R$$ be a relation from a set $$A$$ to a set $$B$$,then
    Solution
    If $$R$$ is a relation from $$A$$ to $$B$$ then $$R$$ is the subset of $$A \times B$$ because it contains all the possible mappings from $$A$$ to $$B$$.
  • Question 4
    1 / -0
    Let $$\displaystyle A=\left \{ 1, 2, 3, 4, 5 \right \}, B=\left \{ 2, 3, 6, 7 \right \}.$$ Then the number of elements in $$\displaystyle \left ( A\times B \right )\cap \left ( B\times A \right )$$ is
    Solution
    Given  $$\displaystyle A=\left \{ 1, 2, 3, 4, 5 \right \}, B=\left \{ 2, 3, 6, 7 \right \}.$$

    $$\therefore \displaystyle n\left ( A \cap B \right )=2$$  

    and we know $$\ n\left [ \left ( A

    \times B \right )\cap \left ( B \times A \right ) \right ]=n\left [

    \left ( A \cap B \right )\times \left ( B \cap A \right ) \right ]$$

    $$\displaystyle \Rightarrow \ n\left [ \left ( A

    \times B \right )\cap \left ( B \times A \right ) \right ]=2 \times 2=4$$
  • Question 5
    1 / -0
    If $$\displaystyle A=\left \{ a, b, c \right \},B=\left \{ c, d, e \right \},C=\left \{ a, d, f \right \}$$, then $$A\times \left ( B\cup C \right )$$ is
    Solution
    $$\displaystyle A\times \left ( B\cup C \right )=\left \{ a, b, c \right\}\times \left \{ a, c, d, e, f \right \}$$
    The above set will consist of 15 ordered pairs and not 3.
    Hence option 'D' is correct choice.
  • Question 6
    1 / -0
    If $$\displaystyle A=\left \{ 2, 4 \right \}$$ and  $$B\left \{ 3, 4, 5 \right \},$$ then $$\displaystyle \left ( A\cap B \right )\times \left ( A\cup B \right )$$ is
    Solution
    Given $$\displaystyle A=\left \{ 2, 4 \right \}$$ and $$B=\left \{ 3, 4, 5 \right \}$$

    $$\therefore \displaystyle A\cap B=\left \{ 4 \right \}$$  and $$\left ( A\cup B \right

    )=\left \{ 2, 3, 4, 5 \right \}$$ 

    $$\displaystyle \therefore \left ( A\cap B \right )\times \left ( A\cup B

    \right )$$ $$\displaystyle =\left \{ \left ( 4, 2 \right ), \left ( 4, 3

    \right ),\left ( 4, 4 \right ),\left ( 4, 5 \right ) \right \}$$

  • Question 7
    1 / -0
    If $$\displaystyle X= \left \{ 1,2,3,4,5 \right \}, Y= \left \{ 1,3,5,7,9 \right \}$$ determine which of the following sets are mappings, relations or neither from A to B:
    (i)$$\displaystyle F= \left \{ \left ( x,y \right ) \because y= x+2, x \in X, y \in Y \right \}$$
    Solution
    Given def of F as 
    $$\displaystyle F= \left \{ \left ( x,y \right ) \because y= x+2, x \epsilon X, y \epsilon Y \right \}$$
    where $$\displaystyle X= \left \{ 1,2,3,4,5 \right \}, Y= \left \{ 1,3,5,7,9 \right \}$$ 

    So, we get $$\left \{ \left ( 1,3 \right ), \left ( 2,4 \right ), \left ( 3,5 \right ), \left ( 4,6 \right ), \left ( 5,7 \right ) \right \} $$
    Since, $$\displaystyle y \in Y$$ and in the above 4,6 do not belong to Y.
    $$\displaystyle \therefore $$ we exclude the ordered pair (2,4) and (4,6)
    $$\displaystyle \therefore \displaystyle  F=\left \{ \left ( 1,3 \right ), \left ( 3,5 \right ), \left ( 5,7 \right ) \right \}$$
    F is not a mapping because the elements 2,4 $$\displaystyle \epsilon X$$ do not have any image. $$\displaystyle F\subset X\times Y$$ and hence F is a relation from X to Y.

  • Question 8
    1 / -0
    If $$\displaystyle A=\left \{ 1, 2, 3 \right \}$$ and $$B=\left \{ 3, 8 \right \},$$ then $$\displaystyle \left ( A\cup B \right )\times \left ( A\cap B \right )$$ is
    Solution
    Given $$\displaystyle A=\left \{ 1, 2, 3 \right \}$$ and $$B=\left \{ 3, 8 \right \},$$
    $$\therefore \displaystyle \left ( A\cup  B \right )=\left \{ 1, 2, 3, 8 \right

    \}$$ and  $$\displaystyle \left ( A\cap   B \right )=\left \{ 3 \right

    \}$$
    $$\displaystyle \therefore \left ( A \cup    B \right )\times

    \left \{ A\cap B \right \}$$ $$\displaystyle =\left \{ \left ( 1, 3

    \right ),\left ( 2, 3 \right ),\left ( 3, 3 \right ),\left ( 8, 3 \right

    ) \right \}$$
  • Question 9
    1 / -0
    Let $$A$$ and $$B$$ be two finite sets having $$m$$ and $$n$$ elements respectively. Then the total number of mapping from $$A$$ to $$B$$ is:
    Solution
    Consider an element $$a\in $$A, it can be assigned to any of the $$n$$ elements of B i.e. it has $$n$$ images. Similarly each of the $$m$$ elements of A can have $$n$$ images in B. Hence, the number of mappings is $$\displaystyle

    n\times n\times n\times $$...m times$$=$$ $$n^{m}$$
  • Question 10
    1 / -0
    Let $$R$$ be a reflexive on a finite set $$A$$ having $$n$$ elements, and let there be $$m$$ ordered pairs in $$R$$. Then
    Solution
    The set consists of $$n$$ elements and for relation to be reflexive it must have at least $$n$$ ordered pairs. It has $$m$$ ordered pairs therefore $$m\ge n$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now