Self Studies

Relations Test 21

Result Self Studies

Relations Test 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$R$$ is a relation from a set $$A$$ to the set $$B$$ and $$S$$ is a relation from $$B$$ to $$C,$$ then the relation $$SoR$$
    Solution
    Since $$R\subseteq A\times B$$ and $$S\subseteq B\times C$$, we have
    So $$R\subseteq A\times C$$.
    $$\therefore$$ So R is a relation from $$A$$ to $$C.$$
  • Question 2
    1 / -0
    What is the Cartesian product of $$A = \left \{1, 2\right \}$$ and $$B = \left \{a, b\right \}$$?
    Solution
    If $$A $$ and $$B$$ are two non empty sets, then the Cartesian product $$A \times B$$ is set of all ordered pairs $$(a,b)$$ such that $$a\in A$$ and $$b\in B$$.

    Given $$A =\{1,2\}$$ and $$B = \{a,b\}$$

    Hence $$A\times B = \{(1,a),(1,b),(2,a),(2,b)\}$$ 
  • Question 3
    1 / -0
    $$A = \left \{1, 2, 3, 4\right \}$$ and $$B = \left \{a, b, c\right \}$$. The relations from $$A$$ to $$B$$ is
    Solution
    $$A=\{1,2,3,4\}$$
    $$B=\{a,b,c\}$$

    Possible Relation $$R:A\to B$$
    $$=\{(1,a),(1,b)(1,c),(2,a),(2,b),(2,c),(3,a),(3,b),(3,c),(4,a),(4,b),(4,c)\}$$

    Option C contains Relation $$R:A\to B$$
  • Question 4
    1 / -0
    What is the first component of an ordered pair $$(1, -1)$$?
    Solution
    In an ordered pair $$(x,y)$$, the first component is $$x$$ and the second component is $$y$$.
    Therefore, in an ordered pair $$(1,-1)$$, the first component is $$1$$.
  • Question 5
    1 / -0
    $$R$$ is a relation defined in $$R\times T$$ by $$(a,b) R (c,d)$$ iff $$a-c$$ is an integer and $$b=d$$. The relation $$R$$ is
    Solution
    We have $$R=\left \{((a,b), (c,d)):a-c\in Z\ and \ b=d; a,b,c,d\in R\right \}$$.
    Let $$(a,b)\in R\times R$$
    $$\therefore (a,b)R(a,b)$$, because $$a-a=0\in Z$$ and $$b=b$$
    $$\therefore$$ R is reflexive.
    Let $$(a,b) R (c,d).\Rightarrow a-c\in Z$$ and $$b=d$$
    $$\Rightarrow c-a\in Z$$ and $$d=b$$
    $$\Rightarrow (c,d) R (a,b)\Rightarrow R$$ is symmetric.
    Let $$(a,b)R(c,d)$$ and $$(c,d)R(e,f)$$.
    $$\Rightarrow a-c\in Z, b=d, c-e\in Z, d=f$$
    $$\Rightarrow (a-c)+(c-e)\in z, b=f$$
    $$\Rightarrow a-e\in z, b=f\Rightarrow (a,b)R(e,f)$$
    $$\Rightarrow R$$ is transitive.
    $$\therefore R$$ is an equivalence relation.
    $$\therefore$$ the correct answer is (c).
  • Question 6
    1 / -0
    Let a relation $$R$$ be defined by $$R=\left \{(4,5), (1,4), (4,6), (7,6), (3,7)\right \}$$. The relation $$R^{-1}\circ R$$ is given by
    Solution
    We have $$R=\left \{(4,5), (1,4), (4,6), (7,6), (3,7)\right \}$$.
    $$\therefore R^{-1}=\left \{(5,4), (4,1), (6,4), (6,7), (7,3)\right \}$$
    $$(4,4)\in R^{-1}\circ R$$ because $$(4,5)\in R$$ and $$(5,4)\in R^{-1}$$
    $$(1,1)\in R^{-1}\circ R$$ because $$(1,4)\in R$$ and $$(4,1)\in R^{-1}$$
    $$(4,4)\in R^{-1}\circ R$$ because $$(4,6)\in R$$ and $$(6,4)\in R^{-1}$$
    $$(4,7)\in R^{-1}\circ R$$ because $$(4,6)\in R$$ and $$(6,7)\in R^{-1}$$
    $$(7,4)\in R^{-1}\circ R$$ because $$(7,6)\in R$$ and $$(6,4)\in R^{-1}$$
    $$(7,7)\in R^{-1}\circ R$$ because $$(7,6)\in R$$ and $$(6,7)\in R^{-1}$$
    $$(3,3)\in R^{-1}\circ R$$ because $$(3,7)\in R$$ and $$(7,3)\in R^{-1}$$
    $$\therefore R^{-1}\circ R=\left \{(4,4), (1,1), (4,7), (7,4), (7,7), (3,3)\right \}$$.
    $$\therefore$$ The correct answer is $$B$$.
  • Question 7
    1 / -0
    Given $$(a - 2, b + 3) = (6, 8)$$, are equal ordered pair. Find the value of $$a$$ and $$b$$.
    Solution
    By equality of ordered pairs, we have
    $$(a - 2, b + 3) = (6, 8)$$
    On equating we get
    $$a - 2 = 6$$
    $$a = 8$$
    $$b + 3 = 8$$
    $$b = 5$$
    So, the value of$$ a = 8 $$ and $$ b = 5.$$
  • Question 8
    1 / -0
    What is the second component of an ordered pair $$(3, -0.2)$$?
    Solution
    In an ordered pair $$(x,y)$$, the first component is $$x$$ and the second component is $$y$$.
    Therefore, in an ordered pair $$(3,-0.2)$$, the second component is $$-0.2$$.
  • Question 9
    1 / -0
    The relation $$R$$ defined on the set $$A=\left \{1,2,3,4,5\right \}$$ by $$R=\left \{(x,y):|x^2-y^2| < 16\right \}$$ is given by
    Solution
    We have $$R=\left \{(x,y):|x^2-y^2| < 16\right \}$$.

    Take $$x=1,$$ we have
    $$ |x^2-y^2| < 16\Rightarrow |1-y^2| < 16$$
    $$\Rightarrow |y^2-1| < 16\Rightarrow y=1,2,3,4$$.

    Take $$x=2,$$ we have
    $$ |x^2-y^2| < 16 \Rightarrow |4-y^2| < 16$$
    $$\Rightarrow |y^2-4| < 16\Rightarrow y=1,2,3,4$$.

    Take $$x=3,$$ we have
    $$ |x^2-y^2| < 16\Rightarrow |9-y^2| < 16$$
    $$\Rightarrow |y^2-9| < 16\Rightarrow y=1,2,3,4$$.

    Take $$x=4,$$ we have
    $$ |x^2-y^2| < 16\Rightarrow |16-y^2| < 16$$
    $$\Rightarrow |y^2-16| < 16\Rightarrow y=1,2,3,4,5$$.

    Take $$x=5,$$ 
    $$|x^2-y^2| < 16 \Rightarrow |25-y^2| < 16$$
    $$\Rightarrow |y^2-25|<16 \Rightarrow y = 4,5$$

    $$\therefore R=\left \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), \\(3,3), (3,4), (4,1), (4,2), (4,3), (4,4), (4,5), (5,4), (5,5)\right \}$$
    $$\therefore$$ The correct answer is $$D$$.
  • Question 10
    1 / -0
    Ordered pairs $$(x, y)$$ and $$(3, 6)$$ are equal if $$x = 3$$ and $$y = ?$$
    Solution
    Given 
    $$(x,y)= (3,6)$$
    $$x=3$$
    $$y=6$$
    The value of $$x=3$$ and $$y=6$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now