Self Studies

Relations Test 29

Result Self Studies

Relations Test 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$A = \left\{ {x,\,y,\,z} \right\}$$ and $$B = \left\{ {1,\,2} \right\}$$. The number relations from A to B is 
    Solution
    $$\Rightarrow$$  $$A=\{X,\,Y,\,Z\}$$ and $$B=\{1,\,2\}$$             [ Given ]
    $$\Rightarrow$$  Number of relation from $$A$$ to $$B$$ $$=2^{Number\,of\,elements\,in\,A\times B}$$
                                                                 $$=2^{n(A)\times n(B)}$$
    $$\Rightarrow$$  Number of elements in set $$A=3$$
    $$\Rightarrow$$  Number of elements in set $$B=2$$
    $$\Rightarrow$$  Number of relation from $$A$$ to $$B$$ $$=2^{n(A)\times n(B)}$$
                                                                 $$=2^{3\times 2}$$
                                                                 $$=2^6$$
                                                                 $$=2\times 2\times 2\times 2\times 2\times 2$$
                                                                 $$=64$$
  • Question 2
    1 / -0
    If $$A = \left \{1, 2, 3, 4\right \}$$ and $$I_{A}$$ be the identify relation on $$A$$, then
    Solution

  • Question 3
    1 / -0
    If x is real, then $$\dfrac{x^2+2x+c}{x^2+4x+3c}$$ can take all real values if?
    Solution
    Let us assume that $$\dfrac{x^2+2x+c}{x^2+4x+3c}=y$$
    $$\Rightarrow yx^2+4xy+3yc=x^2+2x+c$$
    $$\Rightarrow x^2(y-1)+2x(2y-1)+3yc-c=0$$
    For x to be real, Discrimination of this equation should be $$\geq 0$$
    $$\therefore 4(2y-1)^2-4\times (y-1)\times (3yc-c)\geq 0$$
    $$4(4y^2-4y+1)-4(3cy^2-4cy+c)\geq 0$$
    Dividing both sides by $$4$$, we get
    $$(4-3c)y^2+4y(c-1)+1-c\geq 0$$
    For this equation to hold true, coefficient of $$y^2$$ should be greater than $$0$$ and D $$< 0$$
    $$\Rightarrow 4-3c > 0$$ i.e. $$c < \dfrac{4}{3}$$ ..$$(1)$$
    Also,
    $$16(c^2-2c+1)-4\times (1-c)\times (4-3c) < 0$$
    $$\Rightarrow 16c^2-32c+16-4(4-7a+3a^2) < 0$$
    $$\Rightarrow 16c^2-32c+16-12c^2+28c-16 < 0$$
    $$\Rightarrow 4c(c-1) < 0$$
    $$\therefore 0 < c < 1$$.. $$(2)$$
    From $$(1)$$ and $$(2)$$, we can say that $$0 < c < 1$$ is the required condition.
  • Question 4
    1 / -0
    Let $$R = \left \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 2)\right \}$$ be a relation on the set $$A = \left \{1, 2, 3, 4\right \}$$. The relation $$R$$ is
    Solution

  • Question 5
    1 / -0
    Let $$A$$ and $$B$$ be two sets containing four and two elements respectively.Then the number of subset of the  set $$A \times B$$, each having at least three elements is 
    Solution
    $$A$$ and $$B$$ containing $$4$$ and $$2$$ respectively
    set A has 4 elements
    set B has 2 elements
    total number of element in $$(A\times B)=4\times 2=8$$
    total number of subsets of $$(A\times B)={2}^{8}=256$$
    Number of subsets having 0 element $$={ _{  }^{ 8 }{ C } }_{ 0 }=1$$
    Number of subsets having 1 element $$={ _{  }^{ 8 }{ C } }_{ 1 }=8$$
    number of subsets having 2 element $$={ _{  }^{ 8 }{ C } }_{ 2 }=\cfrac{8\times 7}{2}=28$$
    Number of subsets having atleast 3 elements
    $$=256-28-8-1=219$$
  • Question 6
    1 / -0
    If $$a\ne R$$ and the equation $$-3(x-[x])^2+2(x-[x])+a^2=0$$ ( where $$[x]$$ denotes the greatest integer $$\le x$$) has no integral solution, then all possible values of a lie in the interval : 
    Solution
    REF.Image
    As $$x-[x]=\left \{ x \right \}$$, let $$\left \{ x \right \}=y$$

    As x is non-integral, $$0<y<1$$   $$(y\neq 0)$$
    equation becomes, $$-3y^{2}+2y+a^{2}=0$$

    $$\Rightarrow a^{2}=3y^{2}-2y=y(3y-2)$$

    Drawing graph of $$3y^{2}-2y=0$$ (parabola)

    Minima $$\Rightarrow \frac{d}{dy}(3y^{2}-2y)=0\Rightarrow 6y-2=0\Rightarrow y=1/3$$

    Taking positive solutions $$(a^{2}\geq 0)$$

    we get $$0 < a^{2} < 1$$

    $$\Rightarrow a\epsilon (-1,0)\cup (0,1)$$

    Option (C)

  • Question 7
    1 / -0
    $${x\epsilon R:\frac{14x}{x+1}-\frac{9x-30}{x-4}<0}$$ is equal to 
    Solution
    $$ x\epsilon R :\frac{14x}{x+1}-\frac{9x-30}{x-4}< 0 $$
    $$ x+1\neq 0 $$        $$ x-4 \neq 0 $$
    $$ \Rightarrow x \neq -1 $$    $$ x \neq 4 $$
    $$ 14(x-4)-(x+1)(7x-30)< 0 $$
    $$ 14x^{2}-56x-(9x^{2}-30x+9x-30)< 0 $$ 
    $$ 14x^{2}-56x-9x^{2}+30x-9x+30< 0 $$

    $$ 5x^{2}-35x+30< 0 $$
    $$ x^{2}-7x+6< 0 $$
    $$ x^{2}-6x+6< 0 $$
    $$ x(x-6)-1(x-6)< 0 $$
    $$ (x-1)(x-6)< 0 $$
    $$ \Rightarrow x> 1 $$ & $$ x< 6 $$
    $$ \Rightarrow x \epsilon ; (1,4)\cup (4,6) $$

  • Question 8
    1 / -0
    If $$\left| { z }_{ 1 }-a \right| <a,\left| { z }_{ 2 }-a \right| <b,\left| { z }_{ 3 }-a \right| <c$$, $$(a,b,c\in R)$$ then $$\left| { z }_{ 1 }+{ z }_{ 2 }+{ z }_{ 3 } \right| $$ is
    Solution
    Given$$,$$
              $$\left| {{z_1} - a} \right| < a$$
              $$\left| {{z_2} - b} \right| < b$$
              $$\left| {{z_3} - c} \right| < c$$
    Then$$,$$
            $$\left| {{z_1} - a} \right| + \left| {{z_2} - b} \right| + \left| {{z_3} - c} \right| < a + b + c$$
            $$\left| {{z_1} + {z_2} + {z_3}} \right| < \left| {{z_1}} \right| + \left| {{z_2}} \right| + \left| {{z_3}} \right|$$
    and$$,$$
           $$\left| {\left( {{z_1} - a} \right) + \left( {{z_2} - b} \right) + \left( {{z_3} - c} \right) + a + b + c} \right|$$ $$ < \left| {{z_1} - a} \right| + \left| {{z_2} - b} \right| + \left| {{z_3} - c} \right| + \left| {a + b + c} \right|$$
    $$\left| {{z_1} + {z_2} + {z_3}} \right|$$               $$ < a + b + c + a + b + c$$
    $$\left| {{z_1} + {z_2} + {z_3}} \right|$$               $$ <2 \left( {a + b + c} \right)$$
    $$\left| {{z_1} + {z_2} + {z_3}} \right|$$ less then $$2\left( {a + b + c} \right)$$
    Hence$$,$$ Option $$(C)$$ is correct$$.$$
  • Question 9
    1 / -0
    The area of the region $$R = \{(x, y) : |x| \le |y| \, \text{and} \, x^2 + y^2 \le 1 \}$$ is 
    Solution

  • Question 10
    1 / -0
    Let A and B be sets containing 2 and 4 elements respecetively. The number of subsets $$A \times B$$ having 3 or more elements is 
    Solution
    Let $$A=\left\{x,y\right\}$$
    $$B=\left\{a,bc,d\right\}$$
    $$A\times B$$ has $$2\times 4=8$$ elements
    Total substance of $$A\times B={2}^{8}=256$$
    $$\therefore\,$$Total number of subsets of $$A\times B$$ having $$3$$ or more elements
    $$=256-\left(1\,null \,set+8\,single\,ton\,set-^{8}C_{2}\,having\,2\,elements\right)$$
    $$=256-1-8-\dfrac{8!}{6!2!}$$
    $$=256-1-8-\dfrac{8\times 7\times 6!}{6!2!}$$
    $$=256-1-8-28=219$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now