$$\begin{array}{l} R=\left\{ { \left( { x,y } \right) :x,y\in z,\, \, x-y\, \, is\, \, divisible\, \, by\, \, n } \right\} \\ For\, \, { { Reflexive } }, \\ x\in z \\ So\Rightarrow \left( { x-x } \right) is\, \, divisible\, \, by\, \, n \\ \Rightarrow \left( { x,x } \right) \in z \end{array}$$
So, Relation is Reflexive
$$\begin{array}{l} For\, \, Symmetric\Rightarrow Let\left( { x,y } \right) \in R \\ \Rightarrow \left( { x-y } \right) is\, \, divisible\, \, by\, \, n. \\ \Rightarrow \frac { { x-y } }{ n } =c,{ { Remainder } }\, \, is\, \, 0. \\ \Rightarrow \frac { { y-x } }{ n } =-c,{ { Remainder\quad is\quad also\quad 0 } }{ { . } } \\ \Rightarrow \left( { y-x } \right) is\, \, divisible\, \, by\, \, n \\ \left( { y,x } \right) \in R\, \, So,R\, \, is\, \, Symmetric. \\ For\, \, Transitive\Rightarrow Let\left( { x,y } \right) \in R\& \left( { y,z } \right) \in R \\ \Rightarrow \left( { x-y } \right) is\, \, divisible\, \, by\, \, n\Rightarrow \left( { y-q } \right) is\, \, divisible\, \, by\, \, n \end{array}$$
add both these equation (i) & (ii)
$$\begin{array}{l} \left( { x-y } \right) =xc,c\in z-v,\left( { y-q } \right) =na,\left( { a\in z } \right) \\ \Rightarrow \left( { x-y+y-q } \right) =nc+na,c,a\in z \\ \Rightarrow \left( { x-q } \right) =n\left( { a+c } \right) ,c,a\in z \\ \left( { x-q } \right) is\, \, divisible\, \, by\, \, n \\ \Rightarrow \left( { x,q } \right) \in R \end{array}$$
So, R is Transitive
So, the R is Reflexive, Symmetric and Transitive Then it is Equivalence Relation.