Self Studies

Relations Test 30

Result Self Studies

Relations Test 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The domain of $$\dfrac { 10 ^ { x } + 10 ^ { - x } } { 10 ^ { x } - 10 ^ { - x } }$$ is
    Solution
    For domain only the denominator must not be equal to ZERO
    It means $$10^x-10^{-x} \neq 0\\or\> x\neq 0$$
    So domain is R-{0}
    Numerator is fine with any value of x.
  • Question 2
    1 / -0
    If  $$f:R\rightarrow R,g:R\rightarrow R$$ are defined by $$f(x)=5x-3,g(x)={ x }^{ 2 }+3,$$ then $$(go{ f }^{ -1 })(3)=\\ $$
  • Question 3
    1 / -0
    If $$R$$ is the relation from set $$A$$ to a set $$B$$ and $$S$$ is the relation from $$B$$ to a set $$C$$, then the relation $$SoR$$
    Solution

  • Question 4
    1 / -0
    A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by :$$(x,y)\in\;R\; \rightarrow x$$ is relatively prime to y. Then, domain of R is
    Solution
    Given set $$A=\left\{ 2,3,4,5 \right\} $$ to $$B=\left\{ 3,6,7,10 \right\} $$
    is defined as $$\left( x,y \right) \in R\Rightarrow x$$ is relatively prime to $$y$$
    So $$(2,3)\in R$$
    Similarly, $$2$$ is relatively prime to $$7$$ so that $$(2,7)\in R$$
    So, we get $$R=\left\{ \left( 2,3 \right) ,\left( 2,7 \right) ,\left( 3,7 \right) ,\left( 3,10 \right) ,\left( 4,3 \right) ,\left( 4,7 \right) ,\left( 5,3 \right) ,\left( 5,6 \right) ,\left( 5,7 \right) , \right\} $$
    Thus domain $$\left\{ 2,3,4,5 \right\} $$
  • Question 5
    1 / -0
    If $$A$$ and $$B$$ are independent event such that $$P(A \cap B')=\dfrac {3}{25}$$ and $$P(A' \cap B)=\dfrac {8}{25}$$, then $$P(A)=$$
    Solution
    $$A$$ & $$B$$ are independent
    $$P(A\cap B)=\dfrac {3}{25}$$ and $$P(A'\cap B)=\dfrac {8}{25}\quad P(A)=(?)$$
    $$\rightarrow \ P(A)+P(B)=1---(i)$$ ($$A$$& $$B$$ are independent )
    $$\rightarrow \ P(A\cap B')=P(A)-P(A\cap B)$$
    $$P(A)-P(A\cap B)=\dfrac {3}{25}----(ii)$$
    $$\rightarrow \ P(A' \cap B)=P(B)-P(A\cap B)$$
    $$P(B)-P(A\cap B)=\dfrac {8}{25}-----(iii)$$
    $$\rightarrow \ $$ solving equation $$(ii)$$ and $$(iii)$$
    $$\dfrac {\,\,\, P\left( A \right) -P\left( A\cap B \right) =\dfrac { 3 }{ 25 } \\\,\,\, P\left( B \right) -P\left( A\cap B \right) =\dfrac { 8 }{ 25 } \\ -\quad \,\,\,\,\,\,\,+\quad \quad\quad\quad- }{ P\left( A \right) -P\left( B \right) =\dfrac { 3 }{ 25 } -\dfrac { 8 }{ 25 } \\ P\left( A \right) -P\left( B \right) =\dfrac { 3-8 }{ 25 }  } $$
                               $$=\dfrac {-5}{25}$$
    $$\rightarrow \ P(A)-P(B)=\dfrac {-1}{5}$$
    $$P(A)-(1-P(A))=\dfrac {-1}{5}$$
    $$P(A)-I+P(A)=\dfrac {-1}{5}$$
    $$\therefore \ 2P(A)=\dfrac {-1}{5}+1$$
    $$\therefore \ 2P(A)=\dfrac {4}{5}$$
    $$\therefore \ P(A)=\dfrac {4}{5\times 2}$$
    $$\therefore \ P(A)=\dfrac {2}{5}$$

  • Question 6
    1 / -0
    The relation $$R$$ on the set $$Z$$ of all integer numbers defined by $$(x,y)\ \epsilon \ R\ \Leftrightarrow x-y$$ is divisible by $$n$$ is
    Solution
    $$\begin{array}{l} R=\left\{ { \left( { x,y } \right) :x,y\in z,\, \, x-y\, \, is\, \, divisible\, \, by\, \, n } \right\}  \\ For\, \, { { Reflexive } }, \\ x\in z \\ So\Rightarrow \left( { x-x } \right) is\, \, divisible\, \, by\, \, n \\ \Rightarrow \left( { x,x } \right) \in z \end{array}$$
    So, Relation is Reflexive
    $$\begin{array}{l} For\, \, Symmetric\Rightarrow Let\left( { x,y } \right) \in R \\ \Rightarrow \left( { x-y } \right) is\, \, divisible\, \, by\, \, n. \\ \Rightarrow \frac { { x-y } }{ n } =c,{ { Remainder } }\, \, is\, \, 0. \\ \Rightarrow \frac { { y-x } }{ n } =-c,{ { Remainder\quad is\quad also\quad 0 } }{ { . } } \\ \Rightarrow \left( { y-x } \right) is\, \, divisible\, \, by\, \, n \\ \left( { y,x } \right) \in R\, \, So,R\, \, is\, \, Symmetric. \\ For\, \, Transitive\Rightarrow Let\left( { x,y } \right) \in R\& \left( { y,z } \right) \in R \\ \Rightarrow \left( { x-y } \right) is\, \, divisible\, \, by\, \, n\Rightarrow \left( { y-q } \right) is\, \, divisible\, \, by\, \, n \end{array}$$
    add both these equation (i) & (ii)
    $$\begin{array}{l} \left( { x-y } \right) =xc,c\in z-v,\left( { y-q } \right) =na,\left( { a\in z } \right)  \\ \Rightarrow \left( { x-y+y-q } \right) =nc+na,c,a\in z \\ \Rightarrow \left( { x-q } \right) =n\left( { a+c } \right) ,c,a\in z \\ \left( { x-q } \right) is\, \, divisible\, \, by\, \, n \\ \Rightarrow \left( { x,q } \right) \in R \end{array}$$
    So, R is Transitive
    So, the R is Reflexive, Symmetric and Transitive
    Then it is Equivalence Relation.
  • Question 7
    1 / -0
    The relation $$“$$is congruent to$$"$$ on the set of all triangles in a plane is
    Solution
    $$\begin{array}{l} Now,T=set\, \, of\, \, all\, \, triangles &  \\ R:T\to T &  \\ R=\left\{ { \left( { { T_{ 1 } },{ T_{ 2 } } } \right) :{ T_{ 1 } }\cong { T_{ 2 } } } \right\}  &  \\  \\ \left( i \right) For\, \, { { reflexive } } &  \\ { T_{ 1 } }\cong { T_{ 1 } } & \left[ { all\, \, triangles\cong to\, \, itself } \right]  \\ So,\left( { { T_{ 1 } },{ T_{ 1 } } } \right) \in R &  \end{array}$$
    So it is a reflexive relation.

    $$\begin{array}{l} \left( { ii } \right) For\, \, symmetric \\ Let\left( { { T_{ 1 } },{ T_{ 2 } } } \right) \in R\Rightarrow { T_{ 1 } }\cong { T_{ 2 } } \\ \Rightarrow { T_{ 2 } }\cong { T_{ 1 } } \\ So,\left( { { T_{ 2 } },{ T_{ 1 } } } \right) \in R \end{array}$$
    Thus, it is a symmetric relation.

    $$\begin{array}{l} \left( { iii } \right) For\, \, transitive \\ Let\left( { { T_{ 1 } },{ T_{ 2 } } } \right) \in R\Rightarrow { T_{ 1 } }\cong { T_{ 2 } }\to \left( i \right)  \\ \left( { { T_{ 2 } },{ T_{ 3 } } } \right) \in R\Rightarrow { T_{ 2 } }\cong { T_{ 3 } }\to \left( { ii } \right)  \\ From\, \, equation\, \left( i \right) \& \left( { ii } \right) ,\, we\, \, get \\ { T_{ 1 } }\cong { T_{ 2 } }\cong { T_{ 3 } } \\ { T_{ 1 } }\cong { T_{ 3 } }\Rightarrow \left( { { T_{ 1 } },{ T_{ 3 } } } \right) \in R \end{array}$$
    Thus, it is a transitive.

    Hence, given relation is an equivalence.
  • Question 8
    1 / -0
    The number of equivalence relations on a five element set is
    Solution

  • Question 9
    1 / -0
    Let $$A = \left\{ {1,2,3} \right\}$$ and $$R = \left\{ {\left( {1,1} \right),\left( {1,3} \right),\left( {3,1} \right),\left( {2,2} \right),\left( {2,1} \right),\left( {3,3} \right)} \right\}$$, then the relation $$R$$ and $$A$$ is
    Solution
    $$A=\{ 1,2,3\} \\ R=\{ (1,1),(1,3),(3,1),(2,2),(2,1),(3,3)\} $$
    The relation $$R$$ on $$A$$ is reflexive.
    Since $$(1,1),(2,2),(3,3)$$exist.
    Also $$(1,3),(3,1)$$ exist but $$(1,2),(2,1)$$ does not . Hence it is not symmetric.
  • Question 10
    1 / -0
    Let $$S=\{x \in R : x\geq 0$$ and $$2|\sqrt{x}-3|+\sqrt{x}(\sqrt{x}-6)+6=0\}$$. Then S?
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now