Self Studies

Relations Test 31

Result Self Studies

Relations Test 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The domain of $$\dfrac{1}{\sqrt{x-x^{2}}}+\sqrt{3x-1-2x^{2}}$$ is 
    Solution

    $$+(x) = \dfrac {1}{\sqrt {x (1 - x)}} + \sqrt {3x - 1 - 2x^{2}}$$

    Domain of $$f(x)$$ : -
    $$x (1 - x) > 0$$ and $$3x - 1 - 2x^{2} \geq 0$$

    $$2x^{2} - 3x + 1 \leq 0$$

    $$2x (x - 1) - 1 (x - 1) \leq 0$$

    $$(2x - 1) (x - 1)\leq 0$$

    Thus taking the intersection of above $$2$$.

    $$x \leftarrow [\dfrac {1}{2}, 1)$$.

  • Question 2
    1 / -0
    The set of values of '$$b$$' for which the origin and the point $$(1,1)$$ lie on the same side of the straight line $${ a }^{ 2 } x + ab y + 1 = 0 \;\;\forall \;\; a\in R,\; b > 0$$ are:
    Solution

  • Question 3
    1 / -0
    Total number of equivalence relation defined in the set $$s=\{a, b, c\}$$ is
    Solution
    By pascal's triangle
    $$1\\ 1\quad \quad 1\\ 1\quad \quad 3\quad \quad 1\\ 1\quad \quad 7\quad \quad 6\quad \quad 1\\ 1\quad \quad 15\quad 25\quad 10\quad \quad 1\\ 1\quad \quad 31\quad 90\quad 65\quad \quad 15\quad \quad 1$$
    Here no. of elements is $$3$$.
    $$\therefore$$    No. of equivalent relations $$=1+3+1=5$$.
  • Question 4
    1 / -0
    The domain of $$f(x)=\frac{1}{\sqrt{(x-1)(x-2)(x-3)}}$$ is 
    Solution

    $${\textbf{Step -1: Put x=0 and change the sign as negative multiply by negative is positive}}$$                                                      $${\textbf{and positive multiply by negative is negative  }}  $$

                  $$ x = 0 \Rightarrow  -  \times  -  \times  -  =  - $$

    $${\textbf{Step -2:Put x=1.5 and change the sign as positive multiply by negative is negative}}$$                                                     $${\textbf{and negative multiply by negative is positive }}$$

                   $$x = 1.5 \Rightarrow  +  \times  -  \times  -  =  + $$

    $${\textbf{Step -3:Put x=2.5 and change the sign as positive multiply by positive is positive}}$$                                                      $${\textbf{and positive multiply by negative is negative}}$$

                     $$x = 2.5 \Rightarrow  +  \times  +  \times  -  =  - $$

    $${\textbf{Step -4: Put x=4 and change the sign as positive multiply by positive is always positive }}$$

                      $$x = 4 \Rightarrow  +  \times  +  \times  +  =  + $$

                      $${\text{x is positive between 1 and 2 and between 3 and infinity so }} x \in (1,2) \cup (3,\infty )$$

    $$\textbf{Hence option B is correct}$$

     

  • Question 5
    1 / -0
    Let A be a finite set and n(A) = 5, then the number of relations which are not symmetric is _____________________.
    Solution

  • Question 6
    1 / -0
    Let $$A=\left\{ 2,4,6,8 \right\} $$. A relation $$R$$ on $$A$$ is defined by $$R={(2,4),(4,2),(4,6),(6,4)}$$. Then $$R$$ is:
    Solution

  • Question 7
    1 / -0
    If $$x\ \epsilon \ R$$, the number of solutions of $$\sqrt{2x+1}-\sqrt{2x-1}-1$$ is
    Solution

    We have,

    $$x\in R$$

    Then,

    $$\sqrt{2x+1}-\sqrt{2x-1}-1$$


    Now,

    Put $$x=1,2,3,4.........$$

    So,

    $$ \sqrt{2\left( 1 \right)+1}-\sqrt{2\left( 1 \right)-1}-1=\sqrt{3}-2 $$

    $$ \sqrt{2\left( 2 \right)+1}-\sqrt{2\left( 2 \right)-1}-1=\sqrt{5}-\sqrt{3}-1 $$

    And so on….

    Then,

    Infinite number of solution.


    Hence, this is the answer.
  • Question 8
    1 / -0
    If $$\sqrt { \log _ { 4 } \left( \log _ { 2 } \left( \log _ { 2 } \left( x ^ { 2 } - 2 x + a \right) \right) \right. } )$$ is defined $$\forall x \in R$$, then

    Solution

  • Question 9
    1 / -0
    Let $$T$$ be the set of all triangle in the Euclidean plane, and let a relation $$R$$ on $$T$$ be defined as $$aRb$$ if a is congruent to $$b\ \forall \ a, b\ \epsilon \ T$$. Then $$R$$ is
    Solution

  • Question 10
    1 / -0
    Let S be the set of all real nos, then the relation $$R = \{ ( a , b ) : | a - b |$$ is a multiple of 4$$\}$$ then the relation.


    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now