We know that the function is continuous at $$x=0$$ if $$\displaystyle \lim _{ x\rightarrow0 }{ f(x) } $$ exists and is equal to $$f(0)$$.
Therefore, for continuity we have,
$$\displaystyle\lim _{ x\rightarrow0 }{ \dfrac { { \left( { 4 }^{ x }-1 \right) }^{ 3 } }{ \sin { \dfrac { x }{ p } } \log { \left( 1+\dfrac { { x }^{ 2 } }{ 3 } \right) } } } =f\left( 0 \right) =12{ \left( \log { 4 } \right) }^{ 3 }$$
Since
$$\displaystyle\lim _{ x\rightarrow0 }{ \dfrac { { \left( { a }^{ x }-1 \right) } }{ x } } =\log { a }$$ for $$a\neq 0,a>1$$,
$$\displaystyle\lim _{ x\rightarrow0 }{ \dfrac { \sin { x } }{ x } =1 } $$, and
$$\displaystyle\lim _{ x\rightarrow0 }{ \dfrac { \log { \left( 1+x \right) } }{ x } =1 } $$,
the limit on LHS can be rewritten as:
$$\displaystyle\lim _{ x\rightarrow0 }{ \dfrac { { \left( \dfrac { { 4 }^{ x }-1 }{ x } \right) }^{ 3 }\cdot { x }^{ 3 } }{ \dfrac { \sin { \dfrac { x }{ p } } }{ \dfrac { x }{ p } } \cdot \dfrac { x }{ p } \cdot \dfrac { \log { \left( 1+\dfrac { { x }^{ 2 } }{ 3 } \right) } }{ \dfrac { { x }^{ 2 } }{ 3 } } \cdot \dfrac { { x }^{ 2 } }{ 3 } } } $$
$$=\displaystyle\lim _{ x\rightarrow0 }{ \dfrac { { \left( \log { 4 } \right) }^{ 3 }\cdot { x }^{ 3 } }{ 1\cdot \dfrac { x }{ p } \cdot 1\cdot \dfrac { { x }^{ 2 } }{ 3 } } }$$ (using standard limits stated above)
$$=3p{ \left( \log { 4 } \right) }^{ 3 }$$ .... (because $$\displaystyle \lim _{ x\rightarrow 0 }{ \dfrac { { x }^{ 3 } }{ { x }^{ 3 } } =1 } $$)
According to the condition for continuity, this must equal $$f\left( 0 \right) =12{ \left( \log { 4 } \right) }^{ 3 }$$
$$3p{ \left( \log { 4 } \right) }^{ 3 }=12{ \left( \log { 4 } \right) }^{ 3 }$$
$$\\ \Rightarrow 3p=12$$
$$\\ \Rightarrow p = 4$$