Self Studies

Limits and Continuity Test 16

Result Self Studies

Limits and Continuity Test 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$f\left ( x \right )=\begin{cases}\sin x, x\neq n\pi 
                       \\ 2,  x=n\pi \end{cases}$$, where $$n\epsilon \mathbb{Z}$$ and
    $$g\left ( x \right )=\begin{cases}x^{2}+1, x\neq 2 \\
                  3, x=2 \end{cases}$$.
    Then $$\displaystyle \lim_{x\to 0}g\left ( f\left ( x \right ) \right )$$ is
    Solution
    $$\displaystyle \lim _{ x\rightarrow { 0 }^{ + } }{ g\left( f\left( x \right)  \right)  } =\displaystyle \lim _{ x\rightarrow { 0 }^{ + } }{ g\left( \sin { x }  \right)  } \\ =\displaystyle \lim _{ x\rightarrow { 0 }^{ + } }{ \left( \sin ^{ 2 }{ x } +1 \right)  } =0+1=1\\ \displaystyle \lim _{ x\rightarrow { 0 }^{ - } }{ g\left( f\left( x \right)  \right)  } =\displaystyle \lim _{ x\rightarrow { 0 }^{ - } }{ g\left( \sin { x }  \right)  } \\ =\displaystyle \lim _{ x\rightarrow { 0 }^{ - } }{ \left( \sin ^{ 2 }{ x } +1 \right)  }=1$$
  • Question 2
    1 / -0
    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi}{2}}\dfrac{\left ( 1-\tan \dfrac{x}{2} \right )\left ( 1-\sin x \right )}{\left ( 1+\tan \dfrac{x}{2} \right )\left ( \pi -2x \right )^{3}}$$ is

    Solution
    $$\because \tan\left(\dfrac{\pi}{4} - \dfrac{x}{2}\right) = \dfrac{1 - \tan\dfrac{x}{2}}{1+\tan\dfrac{x}{2}}$$
    $$\therefore \displaystyle \lim_{x\rightarrow \dfrac{\pi}{2}}\dfrac{\tan \left ( \dfrac{\pi }{4}-\dfrac{x}{2} \right )\left ( 1-\sin x \right )}{4\left ( \dfrac{\pi -2x}{4} \right )\left ( \pi -2x \right )^{2}}$$

    $$\therefore  \displaystyle \lim_{x\rightarrow \dfrac{\pi}{2}}\dfrac{\tan \left ( \dfrac{\pi }{2}-\dfrac{x}{2} \right )\left(1-\cos \left ( \dfrac{\pi }{2}-x \right )\right)}{4.\left ( \dfrac{\pi }{4}-\dfrac{x}{2} \right )\left ( \pi -2x \right )^{2}}$$

    $$\therefore  \displaystyle\lim_{x\rightarrow \dfrac{\pi}{2}}\dfrac{\tan \left ( \dfrac{\pi }{2}-\dfrac{x}{2}\right )\cdot2\cdot\sin ^{2}\left ( \dfrac{\pi }{4}-\dfrac{x}{2} \right )}{4\cdot\left (\dfrac{\pi }{4}-\dfrac{x}{2} \right )\cdot4^{2}\cdot\left ( \dfrac{\pi -2x}{4} \right )^{2}}$$

    $$\displaystyle =\frac{1}{4}\times \frac{2}{16}=\frac{1}{32}$$
  • Question 3
    1 / -0
    Evaluate $$\displaystyle \lim_{n\rightarrow \infty }\left [ \frac{n!}{n^{n}} \right ]^{1/n}$$.
    Solution
    Let $$\displaystyle P=\lim_{n\rightarrow \infty }\left ( \frac{n!}{n^{n}} \right )^{1/n}$$

    $$\displaystyle P=\lim_{n\rightarrow \infty }\left ( \frac{1.2.3.4...n}{n.nnn....n} \right )^{1/n}$$

    $$\displaystyle P=\lim_{n\rightarrow \infty }\left ( \left ( \frac{1}{n} \right )\left ( \frac{2}{n} \right )\left ( \frac{3}{n} \right )...\left ( \frac{n}{n} \right ) \right )^{1/n}$$

    $$\displaystyle\Rightarrow ln P=\lim_{n\rightarrow \infty }\frac{1}{n}\left ( \log \left ( \frac{1}{n} \right )+\log \left ( \frac{2}{n} \right )+...\log \left ( \frac{n}{n} \right ) \right )$$

    $$\displaystyle P=\lim_{n\rightarrow \infty }\frac{1}{n}\sum_{r=1}^{n}\log \frac{r}{n}$$

    $$=\int_{0}^{1}lnxdx=\left [ xlnx-x \right ]^{1}_{0}$$

    $$=\displaystyle \left ( 0-1 \right )-\lim_{x\rightarrow 0 }\left ( xlnx \right )+0$$

    $$=\displaystyle -1-\lim_{x\rightarrow 0 }\frac{lnx}{1/x}=-1-\lim_{x\rightarrow 0 }\frac{1/x}{\left ( -1/x^{2} \right )}$$

    $$=\displaystyle -1-\lim_{x\rightarrow 0 }x=-1+0=-1\Rightarrow lnP=-1$$

    $$\displaystyle P=e^{-1}=1/e$$
  • Question 4
    1 / -0
    $$\displaystyle \lim_{x\rightarrow\infty}\left(\frac{\sqrt{(1 - \cos x)+ \sqrt{(1 - \cos x)+ \sqrt(1 - \cos x)+...\infty) - 1}}}{x^2}\right)$$ equals to
    Solution
    Let  $$\sqrt{(1 - \cos x)+ \sqrt{(1 - \cos x)+ \sqrt{(1 - \cos x)+...\infty)}}}=y$$

    $$\Rightarrow y = \sqrt{(1 - \cos x) + y}$$

    $$\Rightarrow y^2 - y + (\cos x - 1) = 0$$

    $$\Rightarrow y = \displaystyle\frac{1 + \sqrt{5 - 4 \cos x}}{2}$$

    Now required limit is $$\lim_{x\rightarrow0}$$ $$\displaystyle\frac{1 + \sqrt{5 - 4 cosx - 1}}{2x^2}$$ $$=\displaystyle\frac{1}{2}$$
  • Question 5
    1 / -0
    Evaluate $$\displaystyle \lim_{n\rightarrow \infty }\left [ \left ( 1+\frac{1}{n^{2}} \right )\left ( 1+\frac{2^{2}}{n^{2}} \right )\left ( 1+\frac{3^{2}}{n^{2}} \right )......\left ( 1+\frac{n^{2}}{n^{2}} \right ) \right ]^{1/n}$$
    Solution
    Let $$\displaystyle S=\frac { lim }{ n\rightarrow \infty  } { \left[ \left( 1+\frac { 1 }{ { n }^{ 2 } }  \right) \left( 1+\frac { { 2 }^{ 2 } }{ { n }^{ 2 } }  \right) ...\left( 1+\frac { { n }^{ 2 } }{ { n }^{ 2 } }  \right)  \right]  }^{ \frac { 1 }{ n }  }$$

    $$\displaystyle \Rightarrow logS=\frac { lim }{ n\rightarrow \infty  } \frac { 1 }{ n } \sum _{ r=1 }^{ n }{ log } \left( 1+\frac { { r }^{ 2 } }{ { n }^{ 2 } }  \right) $$

    $$\displaystyle =\int _{ 0 }^{ 1 }{ log } \left( 1+{ x }^{ 2 } \right) dx.=\left( xlog\left( 1+{ x }^{ 2 } \right)  \right) _{ 0 }^{ 1 }-\int _{ 0 }^{ 1 }{ \frac { { 2x }^{ 2 } }{ 1+{ x }^{ 2 } } dx } $$

    $$\displaystyle \Rightarrow log\left( \frac { S }{ 2 }  \right) =2\left[ \int _{ 0 }^{ 1 }{ \frac { { dx } }{ 1+{ x }^{ 2 } }  } -\int _{ 0 }^{ 1 }{ dx }  \right] =2\left[ \frac { \pi  }{ 4 } -1 \right] =\frac { \pi -4 }{ 2 } $$

    $$\displaystyle \Rightarrow S=2{ e }^{ \left( \frac { \pi -4 }{ 2 }  \right)  }$$
  • Question 6
    1 / -0
    $$\underset{x\rightarrow0}{lim}\displaystyle\frac{1-cos^{3}x+sin^{3}x+\ell n(1+x^{3})+\ell n(1+cos\,\,x)}{x^{2}-1+2\,cos^{2}x+tan^{4}x+sin^{3}x}$$ is equal to -
    Solution
    $$\displaystyle \underset { x\rightarrow 0 }{ lim } \frac { 1-cos^{ 3 }x+sin^{ 3 }x+\ell n(1+x^{ 3 })+\ell n(1+cos\, \, x) }{ x^{ 2 }-1+2\, cos^{ 2 }x+tan^{ 4 }x+sin^{ 3 }x } $$

    $$\displaystyle =\frac { 1-1+0+\ln { \left( 1+0 \right)  } +\ln { \left( 1+1 \right)  }  }{ 0-1+2+0+0 } =\ln { 2 } $$
  • Question 7
    1 / -0
    let a, b, c are non zero constant number then $$\lim_{r\rightarrow\infty}\displaystyle\frac{cos\displaystyle\frac{a}{r}-cos\displaystyle\frac{b}{r}cos\displaystyle\frac{c}{r}}{sin\displaystyle\frac{b}{r}sin\displaystyle\frac{c}{r}}$$ equals to
    Solution
    $$\displaystyle \lim _{ r\rightarrow \infty  }{ \dfrac { \cos { \dfrac { a }{ r } -\cos { \dfrac { b }{ r }  } \cos { \dfrac { c }{ r }  }  }  }{ \sin { \dfrac { b }{ r } \sin { \dfrac { c }{ r }  }  }  }  } $$

    $$\displaystyle =\lim _{ r\rightarrow \infty  }{ \dfrac { \cos { \dfrac { a }{ r } -\dfrac { 1 }{ 2 } \left( \cos { \left( \dfrac { b+c }{ r }  \right)  } +\cos { \left( \dfrac { b-c }{ r }  \right)  }  \right)  }  }{ \dfrac { 1 }{ 2 } \left( \cos { \left( \dfrac { b-c }{ r }  \right) -\cos { \left( \dfrac { b+c }{ r }  \right)  }  }  \right)  }  } $$

    By Applying L Hospital,s Rule

    $$\displaystyle =\lim _{ r\rightarrow \infty  }{ \dfrac { -a\sin { \dfrac { a }{ r } -\dfrac { 1 }{ 2 } \left( -\left( b+c \right) \sin { \left( \dfrac { b+c }{ r }  \right)  } -\left( b-c \right) \sin { \left( \dfrac { b-c }{ r }  \right)  }  \right)  }  }{ \dfrac { -1 }{ 2 } { \left( b-c \right)  }\sin { \left( \dfrac { b-c }{ r }  \right)  } +\dfrac { 1 }{ 2 } { \left( b+c \right)  }\sin { \left( \dfrac { b+c }{ r }  \right)  }  }  } $$              $$(here\,\,\,\dfrac{-1}{r^2}$$ 

    $$would\,\, cancel \,\,out\,\, from\,\, numerator \,\,and\,\, denominator)$$

    $$\displaystyle =\lim _{ r\rightarrow \infty  }{ \dfrac { { -a }^{ 2 }\cos { \dfrac { a }{ r } +\dfrac { 1 }{ 2 } \left( { \left( b+c \right)  }^{ 2 }\cos { \left( \dfrac { b+c }{ r }  \right) +{ \left( b-c \right)  }^{ 2 }\cos { \left( \dfrac { b-c }{ r }  \right)  }  }  \right)  }  }{ \dfrac { -1 }{ 2 } { \left( b-c \right)  }^{ 2 }\cos { \left( \dfrac { b-c }{ r }  \right)  } +\dfrac { 1 }{ 2 } { \left( b+c \right)  }^{ 2 }\cos { \left( \dfrac { b+c }{ r }  \right)  }  }  } $$

    $$\displaystyle =\dfrac { { b }^{ 2 }+{ c }^{ 2 }-{ a }^{ 2 } }{ 2bc } $$
  • Question 8
    1 / -0
    The limit of $$x\sin { \left( { e }^{ \frac { 1 }{ x }  } \right)  } $$ as $$x\rightarrow 0$$
    Solution
    $$\displaystyle \lim _{ x\rightarrow 0 }{ x\sin { { e }^{ (1/x) } }  } $$
    LHL$$=f(0-0)=\displaystyle \lim _{ x\rightarrow 0 }{ (-h)\sin { { e }^{ (-1/h) } }  } $$
    $$=-0\times \sin { \left( { e }^{ -\infty  } \right)  } $$
    $$=-0\times \sin { (0)=0 } $$
    $$=0\times$$ (a finite number between $$-1$$ to $$+1$$) $$\quad \left( \because -1\le \sin { x } \le 1 \right) $$
    $$\because$$ LHL$$=$$RHL
    $$\because$$ $$\displaystyle \lim _{ x\rightarrow 0 }{ x\sin { { e }^{ (1/x) } }  } $$ exist and equal to $$0$$
  • Question 9
    1 / -0
    If $$\displaystyle \lim_{x\rightarrow \infty}\dfrac{x^3+1}{x^2+1}-(ax+b)=2$$, then
    Solution
    Given $$\displaystyle \lim _{ x\rightarrow \infty  }{ \frac { { x }^{ 3 }+1 }{ { x }^{ 2 }+1 } -(ax+b)=2 } $$

    $$\Rightarrow \displaystyle \lim _{ x\rightarrow \infty  }{ (\frac { { (1-a)x }^{ 3 }-b{ x }^{ 2 }-ax-b+1 }{ { x }^{ 2 }+1 } )=2 }  $$

    For the limit to exist, the coefficient of $$x^{3}$$ must be zero because if it is not zero then the limit is infinite
    $$\Rightarrow a=1$$

    So the given one will reduce to $$\displaystyle \lim _{ x\rightarrow \infty  }{ (\frac { -b{ x }^{ 2 }-ax-b+1 }{ { x }^{ 2 }+1 } )=2 } $$

    If we apply the limit , we get $$-b=2$$
    $$\Rightarrow b=-2$$
    Therefore the correct option is $$D$$
  • Question 10
    1 / -0
    $$\displaystyle \lim_{x \rightarrow \infty} (\sqrt{x^2 + 8x + 3} - \sqrt{x^2 + 4x + 3}) =$$
    Solution
    Let $$x = \displaystyle \dfrac{1}{y}$$ then as $$x \rightarrow \infty \Rightarrow y \rightarrow 0$$
    $$\therefore \displaystyle  \lim_{y \rightarrow 0} \left ( \sqrt{\dfrac{1}{y^2} + \dfrac{8}{y} + 3} - \sqrt{\dfrac{1}{y^2} + \dfrac{4}{y} + 3} \right )$$
    $$\therefore \displaystyle \lim_{y \rightarrow 0}\frac{\sqrt{3y^2 + 8y + 1} - \sqrt{3y^2 + 4y + 1}}{y}$$
    $$= \displaystyle \lim_{y \rightarrow 0} \left ( \dfrac{\displaystyle \dfrac{1}{2} (3y^2 + 8y + 1)^{-1/2} (6y + 8) - \dfrac{1}{2} (5y^2 + 4y + 1)^{-1/2} (6y + 4)}{1} \right )$$
    $$= \displaystyle  \lim_{y \rightarrow 0} \left ( \frac{8}{2} - 2 \right ) = 2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now