$$\displaystyle \lim _{ r\rightarrow \infty }{ \dfrac { \cos { \dfrac { a }{ r } -\cos { \dfrac { b }{ r } } \cos { \dfrac { c }{ r } } } }{ \sin { \dfrac { b }{ r } \sin { \dfrac { c }{ r } } } } } $$
$$\displaystyle =\lim _{ r\rightarrow \infty }{ \dfrac { \cos { \dfrac { a }{ r } -\dfrac { 1 }{ 2 } \left( \cos { \left( \dfrac { b+c }{ r } \right) } +\cos { \left( \dfrac { b-c }{ r } \right) } \right) } }{ \dfrac { 1 }{ 2 } \left( \cos { \left( \dfrac { b-c }{ r } \right) -\cos { \left( \dfrac { b+c }{ r } \right) } } \right) } } $$
By Applying L Hospital,s Rule
$$\displaystyle =\lim _{ r\rightarrow \infty }{ \dfrac { -a\sin { \dfrac { a }{ r } -\dfrac { 1 }{ 2 } \left( -\left( b+c \right) \sin { \left( \dfrac { b+c }{ r } \right) } -\left( b-c \right) \sin { \left( \dfrac { b-c }{ r } \right) } \right) } }{ \dfrac { -1 }{ 2 } { \left( b-c \right) }\sin { \left( \dfrac { b-c }{ r } \right) } +\dfrac { 1 }{ 2 } { \left( b+c \right) }\sin { \left( \dfrac { b+c }{ r } \right) } } } $$ $$(here\,\,\,\dfrac{-1}{r^2}$$
$$would\,\, cancel \,\,out\,\, from\,\, numerator \,\,and\,\, denominator)$$ $$\displaystyle =\lim _{ r\rightarrow \infty }{ \dfrac { { -a }^{ 2 }\cos { \dfrac { a }{ r } +\dfrac { 1 }{ 2 } \left( { \left( b+c \right) }^{ 2 }\cos { \left( \dfrac { b+c }{ r } \right) +{ \left( b-c \right) }^{ 2 }\cos { \left( \dfrac { b-c }{ r } \right) } } \right) } }{ \dfrac { -1 }{ 2 } { \left( b-c \right) }^{ 2 }\cos { \left( \dfrac { b-c }{ r } \right) } +\dfrac { 1 }{ 2 } { \left( b+c \right) }^{ 2 }\cos { \left( \dfrac { b+c }{ r } \right) } } } $$ $$\displaystyle =\dfrac { { b }^{ 2 }+{ c }^{ 2 }-{ a }^{ 2 } }{ 2bc } $$