Self Studies

Limits and Continuity Test 2

Result Self Studies

Limits and Continuity Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Use limit properties to evaluate $$\displaystyle\lim_{x\to4}\dfrac{3x^2\tan \dfrac {\pi}{x}}x $$
    Solution
    $$\displaystyle\lim_{x\to4}\dfrac{3x^2\tan \dfrac {\pi}{x}}x =\lim_{x\to 4}\left(3x\tan\dfrac{\pi}{x}\right)$$, simplify

    $$=3(4)\tan\dfrac{\pi}{4}=12(1)=12$$, [substitute the limit ]

    The from of the limit is not indeterminate, so we can substitute the limit value
  • Question 2
    1 / -0
    Evaluate $$\underset{x \rightarrow 3}\lim \sqrt[4] {x^3}$$ using the properties of limits.
    Solution
    $$\displaystyle \lim _{ x\rightarrow 3 }{ \sqrt [ 4 ]{ { x }^{ 3 } }  }  \\={ (3^3) }^{ { 1 }/{ 4 } }={ (27) }^{ { 1 }/{ 4 } }$$
  • Question 3
    1 / -0
    $$\underset{x \rightarrow 0}{lim}(1+ax)^{\large{\frac{b}{x}}}$$ is equal to
    Solution
    Now,
    $$\underset{x \rightarrow 0}{lim}(1+ax)^{\large{\frac{b}{x}}}$$
    $$=\underset{x \rightarrow 0}{lim}\left\{(1+ax)^{\large{\frac{1}{ax}}}\right\}^{ab}$$
    $$=\left\{\underset{x \rightarrow 0}{lim}(1+ax)^{\large{\frac{1}{ax}}}\right\}^{ab}$$
    $$=e^{ab}$$. [ Since $$\lim\limits_{x \to 0}(1+x)^{\large{\frac{1}{x}}}=e$$].
  • Question 4
    1 / -0
    The integer $$'n'$$ for which $$\mathop {\lim }\limits_{x \to 0} \dfrac{{\cos 2x - 1}}{{{x^n}}}$$ is a finite non-zero number is
    Solution
    $$\begin{array}{l}\mathop {\lim }\limits_{x \to 0} \cfrac{{\cos 2x - 1}}{{{x^n}}} = \mathop {\lim }\limits_{x \to 0} \cfrac{{ - 2{{\sin }^2}x}}{{{x^n}}}\\at,n = 2\\\mathop {\lim }\limits_{x \to 0} \cfrac{{ - 2{{\sin }^2}x}}{{{x^2}}} =  - 2\end{array}$$
    which is a finite non-zero number
  • Question 5
    1 / -0
    Solve: $$\displaystyle \underset{n\rightarrow \infty}{\lim}\pi^3 \left(1-\dfrac{4}{n^2}\right)$$
    Solution
    $$\displaystyle \lim _{ n\rightarrow \infty  }{ { \pi  }^{ 3 } } \left(1-\frac { 4 }{ { n }^{ 2 } } \right)$$ 
    $$={ \pi  }^{ 3 }(1-0)\\ ={ \pi  }^{ 3 }$$
  • Question 6
    1 / -0
    If a sequence $$< a_{n} >$$ is such that $$a_{1},a_{n+1}=\dfrac {2+3a_{n}}{1+2a_{n}}$$ and $$\displaystyle \lim_{n \rightarrow \infty}a_{n}$$ exists, then $$a_{n}$$ is equal to
  • Question 7
    1 / -0
    $$\lim_{x\rightarrow\ 0}\dfrac{\sin7x}{\sin3x}$$ equals
    Solution
    We have,
    $$\lim_{x\rightarrow\ 0}\dfrac{\sin7x}{\sin3x}$$
    $$\lim_{x\rightarrow\ 0}\dfrac{\sin7x}{\sin3x}$$
    $$\lim_{x\rightarrow\ 0}\dfrac{\dfrac{\sin7x}{7x}\times 7x}{\dfrac{\sin3x}{3x}\times 3x}$$
    $$\lim_{x\rightarrow\ 0}\dfrac{\dfrac{\sin7x}{7x}\times 7}{\dfrac{\sin3x}{3x}\times 3}$$
    $$=\dfrac{1\times 7}{1\times 3}$$
    $$=\dfrac{7}{3}$$

    Hence, this is the answer.
  • Question 8
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 0}{(1+\sin x)^{\cos x}}$$ is equal to 
    Solution
    $$\displaystyle{\lim}_{x\rightarrow 0}{\left(1+\sin{x}\right)}^{\cos{x}}$$
    $$={\left(1+\sin{0}\right)}^{\cos{0}}$$
    $$={1}^{1}=1$$
    '
  • Question 9
    1 / -0
    Evaluate the following limit :
    $$lim_{x\rightarrow 0} \dfrac{1-\cos 2x}{x^2}$$
    Solution
    $$lim_{x\rightarrow 0} \dfrac{1-\cos 2x}{x^2}$$

    $$=lim_{x\rightarrow 0} \dfrac{2\sin^2 x}{x^2}$$

    $$=2lim_{x \rightarrow 0} (\dfrac{\sin x}{x} \times \dfrac{\sin x}{x})$$

    $$=2lim_{x\rightarrow 0} \dfrac{\sin x}{x} \times lim_{x\rightarrow 0} \dfrac{\sin x}{x}=2(1)(1)=2$$
  • Question 10
    1 / -0
    Evaluate $$\displaystyle \lim_{n\rightarrow \infty} \dfrac{1+2+3+...+n}{n^2}$$
    Solution
    $$\displaystyle \lim_{n\rightarrow \infty} \dfrac{1+2+3+...+n}{n^2}$$

    $$\displaystyle =\lim_{n\rightarrow \infty} \dfrac{1}{n^2} \times \dfrac{n(n+1)}{2}$$

    $$\displaystyle =\lim_{n\rightarrow \infty} \dfrac{1}{2}(1+\dfrac{1}{n})=\dfrac{1}{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now