Given,
$$\lim _{x\to \:0}\left(\dfrac{\cos \left(\sin \left(x\right)\right)-\cos \left(x\right)}{x^4}\right)$$
apply L-Hospital's rule
$$=\lim _{x\to \:0}\left(\dfrac{-\sin \left(\sin \left(x\right)\right)\cos \left(x\right)+\sin \left(x\right)}{4x^3}\right)$$
again apply L-Hospital's rule
$$=\lim _{x\to \:0}\left(\dfrac{-\cos ^2\left(x\right)\cos \left(\sin \left(x\right)\right)+\sin \left(x\right)\sin \left(\sin \left(x\right)\right)+\cos \left(x\right)}{12x^2}\right)$$
once again apply L-Hospital's rule
$$=\lim _{x\to \:0}\left(\dfrac{\frac{3\sin \left(2x\right)\cos \left(\sin \left(x\right)\right)+2\cos ^3\left(x\right)\sin \left(\sin \left(x\right)\right)+2\cos \left(x\right)\sin \left(\sin \left(x\right)\right)-2\sin \left(x\right)}{2}}{24x}\right)$$
upon simplification, we get,
$$=\lim _{x\to \:0}\left(\dfrac{3\sin \left(2x\right)\cos \left(\sin \left(x\right)\right)+2\cos ^3\left(x\right)\sin \left(\sin \left(x\right)\right)+2\cos \left(x\right)\sin \left(\sin \left(x\right)\right)-2\sin \left(x\right)}{48x}\right)$$
again applying L-Hospital's rule,
$$=\lim _{x\to \:0}\left(\dfrac{3\left(2\cos \left(2x\right)\cos \left(\sin \left(x\right)\right)-\sin \left(\sin \left(x\right)\right)\cos \left(x\right)\sin \left(2x\right)\right)+2\left(-3\cos ^2\left(x\right)\sin \left(x\right)\sin \left(\sin \left(x\right)\right)+\cos ^4\left(x\right)\cos \left(\sin \left(x\right)\right)\right)+2\left(-\sin \left(x\right)\sin \left(\sin \left(x\right)\right)+\cos ^2\left(x\right)\cos \left(\sin \left(x\right)\right)\right)-2\cos \left(x\right)}{48}\right)$$
substituting $$x=0$$
$$\dfrac{3\left(2\cos \left(2\cdot \:0\right)\cos \left(\sin \left(0\right)\right)-\sin \left(\sin \left(0\right)\right)\cos \left(0\right)\sin \left(2\cdot \:0\right)\right)+2\left(-3\cos ^2\left(0\right)\sin \left(0\right)\sin \left(\sin \left(0\right)\right)+\cos ^4\left(0\right)\cos \left(\sin \left(0\right)\right)\right)+2\left(-\sin \left(0\right)\sin \left(\sin \left(0\right)\right)+\cos ^2\left(0\right)\cos \left(\sin \left(0\right)\right)\right)-2\cos \left(0\right)}{48}$$
we get,
$$=\dfrac{1}{6}$$