Self Studies

Limits and Continuity Test 23

Result Self Studies

Limits and Continuity Test 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\lim\limits_{x\rightarrow0}\dfrac{x\tan 2x-2x\tan x}{\left(1-\cos 2x\right)^{2}}=$$
    Solution
    $$\underset{x\rightarrow 0}{\lim}\dfrac{x\tan2x-2x\tan x}{(1-\cos 2x)^2}$$
    $$\underset{x\rightarrow 0}{\lim}\dfrac{x[\tan2x-2\tan x]}{(1-\cos 2x)^2}$$
    $$\underset{x\rightarrow 0}{\lim}x\dfrac { \left[ \frac { 2\tan { x }  }{ 1-{ \tan { x }  }^{ 2 } } -2\tan { x }  \right]  }{ { \left( 2{ \sin { x }  }^{ 2 } \right)  }^{ 2 } } $$
    $$\underset{x\rightarrow 0}{\lim}{ \dfrac { 2x\tan { x\left[ \dfrac { 1 }{ 1-{ \tan { x }  }^{ 2 } } -1 \right]  }  }{ 4{ \sin { x }  }^{ 4 } }  } $$
    $$\underset{x\rightarrow 0}{\lim}\dfrac { \dfrac { x\tan { x }  }{ \left( 1-{ \tan { x }  }^{ 2 } \right)  } \left[ 1-1+{ \tan { x }  }^{ 2 } \right]  }{ 2{ \sin { x }  }^{ 4 } } $$
    $$\underset{x\rightarrow 0}{\lim} {\dfrac { x{ \tan^3 { x }  }^{ 3 } }{ ( 1-{ \tan^2 { x } )}.2{ \sin^4 { x }  }  }  } $$
    Divide num and den by $$x^4$$
    $$\underset{x\rightarrow 0}{\lim}\dfrac{\dfrac{\sin^3 x}{\cos^3 x}.\dfrac{x}{x^4}}{2\dfrac{\sin^4x}{x^4}(1-\tan^2 x)}$$
    $$\underset{x\rightarrow 0}{\lim}{ \dfrac { { \left( \dfrac { \sin { x }  }{ x }  \right)  }^{ 3 }\dfrac { 1 }{ { \cos ^{ 3 }{ x }  } }  }{ 2{ \left( \dfrac { \sin { x }  }{ x }  \right)  }^{ 4 }\left( 1-{ \tan^2 { x }  } \right)  }  } $$
    Apply limit
    $${ \dfrac { { \left( \dfrac { \sin { 1 }  }{ 1 }  \right)  }^{ 3 }.\dfrac { 1 }{ { \cos ^{ 3 }{1 }  } }  }{ 2{ \left( \dfrac { \sin { 1 }  }{ 1 }  \right)  }^{ 4 }\left( 1-{ \tan^2 { 1 }  }\right)  }  }=\dfrac{1.1}{2.1(1-0)}$$
    $$=\dfrac{1.1}{2.1(1-0)}$$
    $$=\dfrac{1}{2}$$
    $$\therefore \underset{x\rightarrow 0}{\lim}\dfrac{x \tan 2x- 2x\tan x}{(1-\cos 2x)^2}=\dfrac{1}{2}$$ 
  • Question 2
    1 / -0
    The value of $$\displaystyle lim_{x\to 0} \dfrac{cos (sin x) - cos x}{x^4} $$ is equal to
    Solution
    Given,

    $$\lim _{x\to \:0}\left(\dfrac{\cos \left(\sin \left(x\right)\right)-\cos \left(x\right)}{x^4}\right)$$

    apply L-Hospital's rule

    $$=\lim _{x\to \:0}\left(\dfrac{-\sin \left(\sin \left(x\right)\right)\cos \left(x\right)+\sin \left(x\right)}{4x^3}\right)$$

    again apply L-Hospital's rule

    $$=\lim _{x\to \:0}\left(\dfrac{-\cos ^2\left(x\right)\cos \left(\sin \left(x\right)\right)+\sin \left(x\right)\sin \left(\sin \left(x\right)\right)+\cos \left(x\right)}{12x^2}\right)$$

    once again apply L-Hospital's rule

    $$=\lim _{x\to \:0}\left(\dfrac{\frac{3\sin \left(2x\right)\cos \left(\sin \left(x\right)\right)+2\cos ^3\left(x\right)\sin \left(\sin \left(x\right)\right)+2\cos \left(x\right)\sin \left(\sin \left(x\right)\right)-2\sin \left(x\right)}{2}}{24x}\right)$$

    upon simplification, we get,

    $$=\lim _{x\to \:0}\left(\dfrac{3\sin \left(2x\right)\cos \left(\sin \left(x\right)\right)+2\cos ^3\left(x\right)\sin \left(\sin \left(x\right)\right)+2\cos \left(x\right)\sin \left(\sin \left(x\right)\right)-2\sin \left(x\right)}{48x}\right)$$

    again applying L-Hospital's rule,

    $$=\lim _{x\to \:0}\left(\dfrac{3\left(2\cos \left(2x\right)\cos \left(\sin \left(x\right)\right)-\sin \left(\sin \left(x\right)\right)\cos \left(x\right)\sin \left(2x\right)\right)+2\left(-3\cos ^2\left(x\right)\sin \left(x\right)\sin \left(\sin \left(x\right)\right)+\cos ^4\left(x\right)\cos \left(\sin \left(x\right)\right)\right)+2\left(-\sin \left(x\right)\sin \left(\sin \left(x\right)\right)+\cos ^2\left(x\right)\cos \left(\sin \left(x\right)\right)\right)-2\cos \left(x\right)}{48}\right)$$

    substituting $$x=0$$

    $$\dfrac{3\left(2\cos \left(2\cdot \:0\right)\cos \left(\sin \left(0\right)\right)-\sin \left(\sin \left(0\right)\right)\cos \left(0\right)\sin \left(2\cdot \:0\right)\right)+2\left(-3\cos ^2\left(0\right)\sin \left(0\right)\sin \left(\sin \left(0\right)\right)+\cos ^4\left(0\right)\cos \left(\sin \left(0\right)\right)\right)+2\left(-\sin \left(0\right)\sin \left(\sin \left(0\right)\right)+\cos ^2\left(0\right)\cos \left(\sin \left(0\right)\right)\right)-2\cos \left(0\right)}{48}$$

    we get,

    $$=\dfrac{1}{6}$$
  • Question 3
    1 / -0
    $$\lim_{x\to \infty} \dfrac{\sqrt{x^2 + sin^2x}}{x+cosx}$$ equals
    Solution
    Given,

    $$\lim _{x\to \infty \:}\left(\dfrac{\sqrt{x^2+\sin ^2\left(x\right)}}{x+\cos \left(x\right)}\right)$$

    dividing by highest denominator power

    $$=\lim _{x\to \infty \:}\left(\dfrac{\sqrt{1+\frac{\sin ^2\left(x\right)}{x^2}}}{1+\frac{\cos \left(x\right)}{x}}\right)$$

    $$=\dfrac{\lim _{x\to \infty \:}\left(\sqrt{1+\frac{\sin ^2\left(x\right)}{x^2}}\right)}{\lim _{x\to \infty \:}\left(1+\frac{\cos \left(x\right)}{x}\right)}$$

    $$=\dfrac{\sqrt{1+0}}{1+0}$$

    $$=1$$
  • Question 4
    1 / -0
    $$\underset{x\rightarrow 0}{lim} \dfrac{\sqrt{a^2 -ax+x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} -\sqrt{a-x}}$$ is equal to (a > 0)
    Solution
    $$\Rightarrow L=\displaystyle\lim_{x\rightarrow 0}\dfrac{(\sqrt{a^2-ax+x^2}-\sqrt{a^2+ax+x^2})(\sqrt{a+x}+\sqrt{a-x})}{(a+x)-(a-x)}$$
    $$\Rightarrow L=\displaystyle\lim_{x\rightarrow 0}\dfrac{2\sqrt{a}}{2x}(\sqrt{a^2-ax+x^2}-\sqrt{a^2+ax+x^2})$$
    $$\Rightarrow L=\displaystyle\lim_{x\rightarrow 0}\dfrac{\sqrt{a}}{x}\left(\dfrac{(a^2-ax+x^2)-(a^2+ax+x^2)}{\sqrt{a^2-ax+x^2}+\sqrt{a^2+ax+x^2}}\right)$$
    $$\Rightarrow L=\displaystyle\lim_{x\rightarrow 0}\dfrac{\sqrt{a}}{x}\times \dfrac{(-2ax)}{2\sqrt{a}}=-\sqrt{a}$$
    $$\Rightarrow (B)$$.

  • Question 5
    1 / -0
    $$\displaystyle\lim _{ x\rightarrow \dfrac { x }{ 2 }  }{ \dfrac { \cot { x } -\cos { x }  }{ \left( \pi -2x \right) ^{ 3 } }  } $$ is equal to 
  • Question 6
    1 / -0
    $$\lim _ { x \rightarrow 1 } \{ 1 - x + [ x + 1 ] + [ 1 - x ] \} , \text { where } [ x ]$$ denotes greatest integer function is
    Solution

  • Question 7
    1 / -0
    $$\displaystyle\lim_{h\rightarrow 0}\dfrac{\sin\sqrt{x+h}-\sin\sqrt{x}}{h}=$$__________.
    Solution
    $$Lt_{x\rightarrow 0}\cfrac{\sin\sqrt{x+h}-\sin\sqrt{x}}{(x+h)-x}$$
    Let $$f(x)=\sin\sqrt{x}$$
    $$Lt_{h\rightarrow 0}\cfrac{\sin{x+h}-\sin\sqrt{x}}{(x+h)-x}=Lt_{x\rightarrow 0}f\cfrac{(x+h)-f(x)}{h}=f^1(x)\\ \Rightarrow \cos\sqrt x\times\cfrac{1}{2\sqrt x}\\ \Rightarrow \cfrac{\cos\sqrt x}{2\sqrt x}$$
  • Question 8
    1 / -0
    $$ \underset { x\rightarrow 0 }{ lim } \cfrac { 1+cos\left( \pi x \right)  }{ \left( 1-x \right)^ 2 }   $$ is equal to :
    Solution

  • Question 9
    1 / -0
    Evaluate: $$\underset{x\rightarrow 0}{lim} \dfrac{e^{1/x} - 1}{e^{1/x }+ 1}$$
    Solution
    As it is $$ \dfrac{\infty }{\infty }$$ form, applying L'hospital

    $$ L = \lim_{x\rightarrow 0}\dfrac{{e^{1/x}(-1/x^{2})}}{{e^{1/x}(-1/x^{2})}} = 1 \Rightarrow (B) $$

  • Question 10
    1 / -0
    If $$\underset { x\rightarrow { 0 } }{ lim } \dfrac { \left( ax+b \right) -\sqrt { 4+\sin x }  }{ \tan\quad x } =\dfrac { 27 }{ 4 } ~where ~a,b\in R$$ then the value of 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now