Self Studies

Limits and Continuity Test 25

Result Self Studies

Limits and Continuity Test 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\displaystyle \lim _{ x\rightarrow 0 }{ f\left( x \right) } $$ where $$f(x)=\dfrac {\cos (\sin x)-\cos x}{x^{4}}$$, is
    Solution
    $$\mathop {f\left( x \right)}\limits_{\lim \,\,x \to 0}  = \frac{{\cos \left( {\sin x} \right) - \cos x}}{{{x^4}}}$$
    $$ = \frac{{ - \sin \left( {\sin x} \right)\cos x - \sin x}}{{4{x^3}}}$$
    $$ = \frac{{ - \left( {\sin x} \right){{\cos }^2}x + \sin \left( {\sin x} \right)\sin x - \cos x}}{{12{x^2}}}$$
    $$ = \frac{{\sin \left( {\sin x} \right){{\cos }^3}x + \cos \left( {\sin x} \right)\cos 2x + \cos \left( {\sin x} \right)\sin x + \sin \left( {\sin x} \right)\cos x + \sin x}}{{24x}}$$
    $$ = \frac{{1 + 1 + Q + 1 + 1}}{{24}} = \frac{1}{6}$$
  • Question 2
    1 / -0
    $$\lim _{ x\rightarrow \infty  }{ \frac { 1 }{ x } \int _{ 0 }^{ x }{ \left( \sqrt { { t }^{ 2 }+5t } -t \right) dt }  }$$ 
    Solution

  • Question 3
    1 / -0
    The value of $$\displaystyle \lim _{ x\rightarrow a }{ \frac { \sqrt { x-b } -\sqrt { a-b }  }{ { x }^{ 2 }-{ a }^{ 2 } }  } \left( a>b \right) $$ is
    Solution
    We have,
    $$\displaystyle \lim _{ x\rightarrow a }{ \frac { \sqrt { x-b } -\sqrt { a-b }  }{ { x }^{ 2 }-{ a }^{ 2 } } }$$

    This is the $$\dfrac{0}{0}$$ form.
    Apply L-hospital rule,
    $$\lim_{x\to a}\dfrac{\dfrac{1}{2\sqrt {x-b}}-0}{2x-0}$$
    $$\lim_{x\to a}\dfrac{1}{4x\sqrt {x-b}}$$
    $$=\dfrac{1}{4a\sqrt {a-b}}$$

    Hence, this is the answer.
  • Question 4
    1 / -0
    $$\lim _ { x \rightarrow 0 } \dfrac { ( 27 + x ) ^ { 1 / 3 } - 3 } { 9 - ( 27 + x ) ^ { 2 / 3 } }$$  equals :
    Solution
    $$\underset { x\rightarrow 0 }{ lt } \dfrac { { \left( 27+x \right)  }^{ 1/3 }-3 }{ 9-{ \left( 27+x \right)  }^{ 2/3 } } $$
    $$=\underset { x\rightarrow 0 }{ lt } \dfrac { \dfrac { 1 }{ 3 } { \left( 27+x \right)  }^{ -2/3 } }{ \dfrac { -2 }{ 3 } { \left( 27+x \right)  }^{ -1/3 } } $$
    $$=\underset { x\rightarrow 0 }{ lt } \dfrac { -1 }{ 2 } \dfrac { { \left( 27+x \right)  }^{ 1/3 } }{ { \left( 27+x \right)  }^{ 2/3 } } $$
    $$=\dfrac { -1 }{ 2 } \left( \dfrac { 3 }{ 9 }  \right) ,\quad \dfrac { -1 }{ 6 } $$    [A]
  • Question 5
    1 / -0
    The value of $$\displaystyle \lim _{ x\rightarrow 0 }{ \frac { x }{ 5 }  } \left[ \frac { x }{ 2 }  \right] $$ (where $$[.]$$ denotes the greatest integer function) is
    Solution
    Given,

    $$\lim _{x\to 0}\left(\dfrac{x}{5}\left[\dfrac{x}{2}\right]\right)$$

    $$\lim _{x\to \:0}\left(\dfrac{x}{5}\cdot \dfrac{x}{2}\right)$$

    put the value $$x=0$$

    $$=\dfrac{0}{5}\cdot \dfrac{0}{2}$$

    $$=0$$
  • Question 6
    1 / -0
    $$\underset { x\rightarrow 1 }{ Lim } \left[ { \left[ \frac { 4 }{ { x }^{ 2 }-{ x }^{ -1 } } -\frac { { 1-3x+x }^{ 2 } }{ { 1-x }^{ 3 } }  \right]  }^{ -1 }+\frac { 3\left( { x }^{ 4 }-1 \right)  }{ { x }^{ 3 }-{ x }^{ -1 } }  \right] =$$
    Solution
    $$\displaystyle\lim_{x\rightarrow 1}\left[\left[\dfrac{4}{x^2-x^{-1}}-\dfrac{1-3x+x^2}{1-x^3}\right]^{-1}+\dfrac{3(x^4-1)}{x^3-x^{-1}}\right]$$
    $$\displaystyle\lim_{x\rightarrow 1}\left[\left[\dfrac{4x}{x^3-1}+\dfrac{1-3x+x^2}{x^3-1}\right]^{-1}+\dfrac{3(x^4-1)}{x^3-x^{-1}}\right]$$
    $$\displaystyle\lim_{x\rightarrow 1}\left[\left[\dfrac{x^2+x+1}{x^3-1}\right]^{-1}+\dfrac{3(x^4-1)x}{x^4-1}\right]$$
    $$\displaystyle\lim_{x\rightarrow 0}\left[\dfrac{(x-1)(x^2+x+1)}{x^2+x+1}+3x\right]$$ as $$(x^3-1)2(x-1)(x^2+x+1)$$
    $$\displaystyle\lim_{x\rightarrow 1}[(x-1)+3x]=(1-1)+3(1)=3$$
    Answer$$=3$$.

  • Question 7
    1 / -0
    $$\displaystyle \underset { x\rightarrow 0 }{ lim } \ \ \frac { ({ 1-\cos2x) }^{ 2 } }{ 2x \tan x-x \tan2x } $$ is :
    Solution
    Let  $$L=\displaystyle \lim_{x\rightarrow 0} \frac { (1 - cos 2x)^2}{2x \tan x - x \tan 2x}= \lim_{x\rightarrow 0} \frac {( 2 sin x)^2}{2x \tan x- \frac {x 2 \tan x}{1 - \tan^2 x}}$$

    $$=\displaystyle \lim_{x\rightarrow 0}  \frac { { 4 sin^4 x}}{\frac{1 - \tan^2 x}{2 x \tan x - 2x \tan^3 x - 2x \tan x}}$$

    $$=\displaystyle \lim_{x\rightarrow 0}  \frac {4 sin ^4 x ( 1 - \tan^2 x)}{- 2 x \tan^3 x}$$

    $$=\displaystyle \lim_{x\rightarrow 0}  \frac {2 sin^4 x}{-x \frac {sin^3 x}{cos x}}( 1 - \tan^2 x)$$

    $$\displaystyle =- 2 \lim_{x\rightarrow 0}  \left \{ \frac {sin x . cos^3 x}{x} (1 \tan^2 x) \right \}$$

    $$ \displaystyle = -2 \left ( \lim_{x\rightarrow 0}  \frac { sin x}{x} \right ) \lim_{x\rightarrow 0}  \left \{ cos^3 x ( 1 - \tan^2 x) \right \}$$

    $$L\displaystyle  = -2(1)(1)$$

    $$L\displaystyle  = -2$$

  • Question 8
    1 / -0
    The value of $$\displaystyle \lim_{x\rightarrow 0} \dfrac{(1-\cos 2x)\sin 5x}{x^{2}\sin 3x}$$ is
    Solution
    $$\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {1 - \cos 2x} \right) \cdot \sin 5x}}{{{x^2}\sin 3x}}$$
    $$ = \mathop {\lim }\limits_{x \to 0} \dfrac{{ 2{{\sin }^2}x \cdot \sin 5x}}{{{x^2}\sin 3x}}$$
    $$ = \mathop {\lim }\limits_{x \to 0} \dfrac{{2{{\left( {\dfrac{{\sin x}}{x}} \right)}^2} \cdot \left( {\dfrac{{\sin 5x}}{{5x}}} \right) \cdot 5x}}{{\left( {\dfrac{{\sin 3x}}{{3x}}} \right) \cdot 3x}}$$
    $$ = \dfrac{{10}}{3}$$.
  • Question 9
    1 / -0
    $$\underset { x\rightarrow 0 }{ \lim } \dfrac { { 3 }^{ 2x }-{ 2 }^{ 3x } }{ x } $$ is equal to
    Solution

    We have,

    $$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{3}^{2x}}-{{2}^{3x}}}{x}$$


    Applying L’ Hospital rule and we get,

    $$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{3}^{2x}}\log 3\times2-{{2}^{3x}}\log 2\times(3)}{1}$$


    Taking limit and we get,

    $$ ={{3}^{2\times 0}}\log 3^2-{{2}^{3\times 0}}\log 2^3 $$

    $$ =\log 9-\log 8 $$

    $$ =\log \dfrac{9}{8} $$


    Hence, this is the answer.

  • Question 10
    1 / -0
    Let $$f(x)=\dfrac{ax+b}{x+1},lim_{x\rightarrow 0} f(x)=2$$ and $$lim_{x\rightarrow \infty} f(x)=1$$ then $$f(-2)=$$
    Solution
    $$\underset{x\rightarrow 0}{lim} f(x)=2$$
    $$\Rightarrow \underset{x\rightarrow 0}{lim} \dfrac{ax+b}{x+1}=2$$
    $$\Rightarrow \dfrac{b}{1}=2$$
    $$\therefore b=2$$

    Its is also given that
    $$\underset{x\rightarrow \infty}{lim} f(x)=1$$
    $$\Rightarrow \underset{x\rightarrow \infty}{lim} \dfrac{ax+b}{x+1}=1$$

    $$\Rightarrow \underset{x\rightarrow \infty}{lim}\dfrac{a+\dfrac{b}{x}}{1+\dfrac{1}{x}}=1$$

    $$\Rightarrow \dfrac{a+0}{1+0}=1$$

    $$\therefore a=1$$
    Substituting the values of a and b in $$f(x)=\dfrac{ax+b}{x+1}$$, we get,

    $$f(x)=\dfrac{x+2}{x+1}$$

    $$\therefore f(-2)=\dfrac{-2+2}{-2+1}=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now