Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    Which of the following statement is not correct

  • Question 2
    1 / -0

    What is the value of $$\underset{x\rightarrow 0}{lim}\dfrac{\sin\,x}{\tan \,3x}$$

  • Question 3
    1 / -0

    If $$f(x)=\left\{\begin{array}{l}x-5;\>x\leq 1\\4x^{2}-9;\>1<x\le2\\3x^{2}+4;\>x>2\end{array}\right.$$
    Then $$f(2^{+})-f(2^{-})=$$

  • Question 4
    1 / -0

     If $$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}2\mathrm{x}+\mathrm{b}(\mathrm{x}<\alpha)\\\mathrm{x}+\mathrm{d}(\mathrm{x}\geq\alpha)\end{array}\right.$$is such that
    $$\displaystyle \lim_{x\rightarrow \alpha}f(x) =L$$, then $$L=$$

  • Question 5
    1 / -0

    lf $$f(x)=x,x<0;f(x)=0,x=0$$; $$f(x)=x^{2};x>0$$, then $$\displaystyle \lim_{x\rightarrow 0}f(x)$$ is equal to

  • Question 6
    1 / -0

    $$f(x)=2x+1, a=1,l=3$$ and $$\epsilon=0.001$$, then $$\delta>0$$ satisfying $$0<|x-a|<\delta$$ such that $$|f(x)-l|<\epsilon$$, is

  • Question 7
    1 / -0

     Evaluate: $$\displaystyle \lim_{h\rightarrow 0}\left(\frac{1}{h\sqrt[3]{8+h}}-\frac{1}{2h}\right)$$

  • Question 8
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\frac{(1-e^{x})\sin x}{x^{2}+x^{3}}=$$

  • Question 9
    1 / -0

     lf $$\displaystyle \lim_{x\rightarrow a^+}f(x)=L$$, then for each $$\epsilon>0$$, there exists $$\delta>0$$ so that

  • Question 10
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\frac{1-\cos x}{x\log(1+x)}=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now