Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    The graph of the function $$y = f (x)$$ has a unique tangent at the point $$(e^{a} ,0)$$ through which the graph passes then $$\displaystyle \lim_{x\rightarrow e^{a}}\frac{log_{e}\{1+7f(x)\}-sinf(x)}{3f(x)}$$ is

  • Question 2
    1 / -0

    $$\displaystyle f\left( x \right)=\begin{cases} \begin{matrix} \frac { \cos ^{ 2 }{ x } -\sin ^{ 2 }{ x } -1 }{ \sqrt { { x }^{ 2 }+4 } -2} , & x\neq 0 \end{matrix} \\ \begin{matrix} a, & x=0 \end{matrix} \end{cases}$$ then the value of $$a$$ in order that $$f(x)$$ may be continuous at $$x=0$$ is

  • Question 3
    1 / -0

    If $$\displaystyle f(x)=\frac{\sin 3x+A\sin 2x+B\sin x}{x^{5}};x\neq 0$$ is continuous at $$x=0$$ , then

  • Question 4
    1 / -0

    $$f(x)=\left\{\begin{array}{ll}\dfrac{(x+bx^{2})^{1/_{2}}-x^{1/2}}{bx^{3/2}} & x>0\\c & x=0\\\dfrac{\sin(a+1)x+\sin x}{x} & x<0\end{array}\right.$$ is continuous at $${x}=0$$, then

  • Question 5
    1 / -0

    Assertion(A): $$f(x)=\left\{\begin{array}{ll}x^{2}\sin(\frac{1}{x}) , & x\neq 0\\0, & x=0\end{array}\right.$$ is continuous at $${x}=0$$
    Reason(R): Both $$h(x)=x^{2},g(x)=
    \left\{\begin{array}{ll}\sin(\frac{1}{x}) , & x\neq 0\\0, & x=0\end{array}\right.$$are continuous at $$x = 0$$

  • Question 6
    1 / -0

    If $$\phi (x) =\displaystyle \lim_{n \rightarrow \infty} \frac{x^{2n} f(x) + g(x)}{1 + x^{2n}}$$, then

  • Question 7
    1 / -0

    If $${ x }_{ 1 },{ x }_{ 2 },{ x }_{ 3 },..,{ x }_{ n }$$ are the roots of the equation $$x^n+ax+b=0,$$ then the value of $$\left( { x }_{ 1 }-{ x }_{ 2 } \right) \left( { x }_{ 1 }-{ x }_{ 3 } \right) \left( { x }_{ 1 }-{ x }_{ 4 } \right) ...\left( { x }_{ 1 }-{ x }_{ n } \right) $$ is equal to

  • Question 8
    1 / -0

    If $$\displaystyle f(x) = \frac{x - e^x + cos  2x}{x^2}, x \neq 0$$, is continuous at $$x = 0$$, 
    where [x] and {x} denotes the greatest integer and fractional part functions, respectively.


    Then which of the following is correct?

  • Question 9
    1 / -0

    If $$f(x) = \displaystyle \left\{\begin{matrix}\dfrac{8^x - 4^x - 2^x+1}{x^2}, & x>0\\ e^x \sin  x+ \pi  x + \lambda  \ln  4, & x \leq 0\end{matrix}\right.$$ is continuous at $$x = 0$$, then the value of $$\lambda$$ is

  • Question 10
    1 / -0

    STATEMENT-1 : $$\displaystyle \lim_{x \rightarrow 0} [x] \left \{ \frac{e^{1/x} - 1}{e^{1/x} + 1} \right \}$$ (where [.] represents the greatest integer function) does not exist.
    STATEMENT-2 : $$\displaystyle \lim_{x \rightarrow 0} \left ( \frac{e^{1/x} - 1}{e^{1/x} + 1} \right )$$ does not exists.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now