Self Studies

Limits and Continuity Test 4

Result Self Studies

Limits and Continuity Test 4
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    lf $$f(x)=2x-3,a=2,l=1$$ and $$\epsilon =0.001$$ then $$\delta>0$$ satisfying$$ 0<|x-a|<\delta, \ \ |f(x)-l|<\epsilon$$, is:
    Solution
    $$|f(x)-l|<0.001=\epsilon$$
    $$\Rightarrow |2x-3-1| < 0.001$$
    $$\Rightarrow -0.001<2x-4<0.001$$
    $$\Rightarrow -0.0005<x-2<0.0005$$
    $$\Rightarrow |x-2|<0.0005$$
    $$\Rightarrow |x-a|<0.0005=\delta$$
    Hence, $$\delta = 0.0005 > 0$$
  • Question 2
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 0}\frac{e^{x}-e^{\sin x}}{2(x-\sin x)}=$$
    Solution
    We simplify the given expression as,

    $$\displaystyle\lim_{x \rightarrow 0}     \dfrac{{e}^{sin x}({e}^{x - sin x} - 1)}{2(x - sin x)} $$

    Let $$x - sin x = y$$

    As $$ x \rightarrow 0 \text{ so  does  y } \rightarrow 0 $$

    Hence, the question transforms into

    $$(\displaystyle\lim_{x \rightarrow 0}  \dfrac{{e}^{sin x}}{2}) \times (\lim _{y \rightarrow  0}\dfrac{{e}^{y} - 1}{y}) $$

    $$=  \dfrac{1}{2}  \times 1 $$

    $$=  \dfrac{1}{2} $$
  • Question 3
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{x\tan 2x-2x\tan x}{(1-\cos 2x)^{2}}$$=
    Solution
    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \dfrac{x\tan 2x-2x\tan x}{(1-\cos 2x)^{2}}$$

    $$\displaystyle =\lim _{ x\rightarrow 0 }{ \dfrac { x\dfrac { 2\tan { x }  }{ 1-\tan ^{ 2 }{ x }  } -2x\tan  x }{\left(1-\dfrac { 1-\tan ^{ 2 }{ x }  }{ 1+\tan ^{ 2 }{ x }  } \right)^{ 2 } }  } $$

    $$\displaystyle =\lim _{ x\rightarrow 0 }{ \dfrac { 2x\tan ^{ 3 }{ x }  }{ 4\tan ^{ 4 }{ x }  }}$$

    $$\displaystyle =\lim _{ x\rightarrow 0 }{ \dfrac { 2x }{ 4\tan { x }  } }  $$

    $$=\displaystyle \dfrac { 1 }{ 2 } $$
  • Question 4
    1 / -0
    lf $$ \displaystyle \lim _{ x\rightarrow 0 } \left(\displaystyle  \frac { \cos  4x+a\cos  2x+b }{ x^{ 4 } }  \right) $$ is finite then the value of $$a,b$$ respectively are
    Solution
    $$\lim _{ x\rightarrow 0 } \left(\displaystyle  \frac { \cos  4x+a\cos  2x+b }{ x^{ 4 } }  \right) $$

    As $${ x\rightarrow 0 }$$, denominator tends to 0, so the numerator also tends to 0.

    $$\Rightarrow \lim _{ x\rightarrow 0 } \cos  4x+a\cos  2x+b=0$$
    at $$x = 0 \Rightarrow \cos 4x = 1, \cos 2x = 1$$
    $$\Rightarrow 1+a+b=0$$
    $$\Rightarrow a+b=-1$$
    Now, put $$a = -4 $$
    $$ \Rightarrow b = 3$$
    Option C satisfies above equation.
  • Question 5
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 1}(1-x)\tan(\displaystyle \frac{\pi x}{2})=$$
    Solution
    $$\displaystyle \lim_{x\rightarrow 1}(1-x)\tan(\displaystyle \dfrac{\pi x}{2})$$
    $$=\lim _{ x\rightarrow 1 } \displaystyle\dfrac { 1-x }{ \cot { (\dfrac { \pi x }{ 2 }  } ) } $$
    It is of the form $$\displaystyle \dfrac{0}{0}$$, so applying L-Hospital's rule 
    $$=\lim _{ x\rightarrow 1 } \displaystyle\dfrac { -1 }{ -\dfrac { \pi  }{ 2 } \csc ^{ 2 }{ (\dfrac { \pi x }{ 2 } ) }  } $$
    $$=\displaystyle \dfrac{2}{\pi}$$
  • Question 6
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{1-\cos^{3}x}{x\sin 2x}$$=
    Solution
    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{1-\cos^{3}x}{x\sin 2x}=\lim_{x\rightarrow 0}\displaystyle \frac{(1-\cos x)(1+\cos x+\cos^2x)}{x\sin 2x}$$

    $$=\displaystyle \lim_{x\rightarrow 0}\displaystyle \dfrac{2\sin^2\frac{x}{2}(1+\cos x+\cos^2x)}{4x\cos x\sin\dfrac{x}{2}\cos\dfrac{x}{2}}=\lim_{x\rightarrow 0}\displaystyle \dfrac{\sin\dfrac{x}{2}(1+\cos x+\cos^2x)}{4 \times \dfrac x2\cos \tfrac x2 \times \cos x } =\frac{3}{4}$$...... As$$\left \{ \lim_{\tfrac x2 \to0} \dfrac {\sin \tfrac x2}{\tfrac x2}=0 \right \}$$
  • Question 7
    1 / -0

    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{2}}\displaystyle \dfrac{(\dfrac{\pi}{2}-x)\sec x}{cosecx}$$=
    Solution
    $$\displaystyle \lim _{ x\rightarrow \dfrac { \pi  }{ 2 }  } \dfrac { (\dfrac { \pi  }{ 2 } -x)\sec  x }{ \csc { x }  } $$

    $$\displaystyle=\lim _{ h\rightarrow 0 } \dfrac { (\dfrac { \pi  }{ 2 } -\dfrac { \pi  }{ 2 } +h)\sec { (\dfrac { \pi  }{ 2 } -h) }  }{ \csc { (\dfrac { \pi  }{ 2 } -h } ) }$$

    $$\displaystyle =\lim _{ h\rightarrow 0 } \dfrac { h\csc { h }  }{ \sec { h }  } $$

    $$\displaystyle =\lim _{ h\rightarrow 0 } \dfrac { h\cos { h }  }{ \sin { h }  } =1$$
  • Question 8
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{(1-\cos 2x)\sin 5x}{x^{2}\sin 3x}=$$
    Solution
    Using, $$1 - cos 2x = 2{sin}^{2} x $$,
    The expression transforms to,
    $$lim _{ x \rightarrow 0  }        \dfrac{ 2{sin}^{2} xsin 5x}{{x}^{2}sin 3x} $$
    Rewriting the expression in a different form,
    $$lim _{ x \rightarrow 0 }          \dfrac{2{sin}^{2} x}{{x}^{2}} \times \dfrac{sin 5x}{5x} \times \dfrac{3x}{sin 3x} \times \dfrac{5}{3} $$
    Therefore, the limit to the expression is $$ \dfrac{10}{3} $$
    Hence, option 'A' is correct.
  • Question 9
    1 / -0
    Solve : $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \dfrac{\sin x\sin\left(\dfrac{\pi}{3}+x\right)\sin\left(\dfrac{\pi}{3}-x\right)}{x}$$
    Solution
    Solve : $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \dfrac{\sin x\sin\left(\dfrac{\pi}{3}+x\right)\sin\left(\dfrac{\pi}{3}-x\right)}{x}$$
    $$=\underset{x\rightarrow0}\lim\dfrac{\sin x}{x}\times\underset{x\rightarrow 0}\lim\sin(\dfrac{\pi}{3}+x)\times\underset{x\rightarrow 0}\lim\sin(\dfrac{\pi}{3}-x)$$
    $$=1\times\sin\dfrac{\pi}{3}\times\sin\dfrac{\pi}{3}$$
    $$=1\times\dfrac{\sqrt3}{2}\times\dfrac{\sqrt3}{2}$$
    $$=\dfrac34$$
  • Question 10
    1 / -0
    The value of $$\displaystyle \lim _{ \alpha \rightarrow \beta  }{ \left[ \frac { \sin ^{ 2 }{ \alpha  } -\sin ^{ 2 }{ \beta  }  }{ { \alpha  }^{ 2 }-{ \beta  }^{ 2 } }  \right]  } $$ is:
    Solution
    $$\displaystyle \lim _{ \alpha \rightarrow \beta  }{ \left[ \frac { \sin ^{ 2 }{ \alpha  } -\sin ^{ 2 }{ \beta  }  }{ { \alpha  }^{ 2 }-{ \beta  }^{ 2 } }  \right]  } =\lim _{ \alpha \rightarrow \beta  }{ \left[ \frac { \sin { \left( \alpha -\beta  \right)  } \sin { \left( \alpha +\beta  \right)  }  }{ \left( \alpha -\beta  \right) \left( \alpha +\beta  \right)  }  \right]  } $$

    $$\displaystyle =\lim _{ \alpha \rightarrow \beta  }{ \left[ \frac { \sin { \left( \alpha -\beta  \right)  }  }{ \left( \alpha -\beta  \right)  }  \right]  } \times \lim _{ \alpha \rightarrow \beta  }{ \left[ \frac { \sin { \left( \alpha +\beta  \right)  }  }{ \left( \alpha +\beta  \right)  }  \right]  } $$

    $$\displaystyle =\lim _{ \alpha -\beta \rightarrow 0 }{ \left[ \frac { \sin { \left( \alpha -\beta  \right)  }  }{ \left( \alpha -\beta  \right)  }  \right]  } .\left( \frac { \sin { 2\beta  }  }{ 2\beta  }  \right) $$ ....... $$[\because \alpha \rightarrow \beta \implies \alpha - \beta \rightarrow 0]$$

    $$\displaystyle =1.\frac { \sin { 2\beta  }  }{ 2\beta  }$$ ..... $$[\because \displaystyle \lim_{x\rightarrow 0} \dfrac{\sin x}{x}=1]$$
    $$=\dfrac { \sin { 2\beta  }  }{ 2\beta  } $$   
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now