(i) $$\underset { x\rightarrow \infty }{ lim } { \left( \dfrac { 1+x }{ 2+x } \right) }^{ x+2 }$$
$$=$$ $${ \left( \dfrac { \dfrac { 1 }{ x } +1 }{ \dfrac { 2 }{ x } +1 } \right) }^{ x+2 }$$
$$=\underset { x\rightarrow \infty }{ lim } { e }^{ ln{ \left( \dfrac { 1+x }{ 2+x } \right) }^{ 2+x } }$$
$$={ e }^{ \underset { x\rightarrow \infty }{ lt } \left( 2+x \right) ln\left( \dfrac { 1+x }{ 2+x } \right) }$$
$$={ e }^{ \underset { x\rightarrow \infty }{ lt } \dfrac { ln\left( 1+x \right) -ln\left( 2+x \right) }{ \left( 1/2+x \right) } }$$
$$={ e }^{ \underset { x\rightarrow \infty }{ lt } \dfrac { \dfrac { 1 }{ 1+x } -\dfrac { 1 }{ 2+x } }{ \dfrac { -1 }{ { \left( 2+x \right) }^{ 2 } } } }$$
$$={ e }^{ \underset { x\rightarrow \infty }{ lt } \dfrac { { \left( 2+x \right) }^{ 2 }\left[ \left( 2+x \right) -\left( 1+x \right) \right] }{ \left( 2+x \right) -\left( 1+x \right) \left( 2+x \right) \left( 1+x \right) } }$$
$$={ e }^{ \underset { x\rightarrow \infty }{ lt } \dfrac { \left( 2+x \right) }{ 1+x } }$$
$$={ e }^{ 1 }$$
(ii) $$\underset { x\rightarrow 0 }{ lim } { \left( 1+2x \right) }^{ 3/x }$$
$$={ e }^{ \underset { x\rightarrow 0 }{ lt } \left( 2x \right) 3/x }$$
$$={ e }^{ 6 }$$
(iii) $$\underset { \theta \rightarrow 0 }{ lt } \dfrac { \sin\theta }{ 2\theta } =\underset { \theta \rightarrow 0 }{ lt } \dfrac { \cos\theta }{ 2 } =\dfrac { 1 }{ 2 } $$
(iv) $$\underset { x\rightarrow 0 }{ lt } \dfrac { { log }_{ e }\left( 1+x \right) }{ x } .\underset { x\rightarrow 0 }{ lt } \dfrac { 1 }{ 1+x } =1$$
$$\therefore$$ $$3<4<1<2$$.