Self Studies

Limits and Continuity Test 45

Result Self Studies

Limits and Continuity Test 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\lim _ { x \rightarrow 0 } \frac { \sin x \sin \left( \frac { \pi } { 3 } + x \right) \sin \left( \frac { \pi } { 3 } - x \right) } { x } =$$
    Solution

  • Question 2
    1 / -0
    $$lim_{x\to \dfrac{\pi}{2}} tan^2x(\sqrt{2sin^2x + 3 sin x +4} - \sqrt{sin^2x + 6 sin x+2})$$ is equal to
    Solution

  • Question 3
    1 / -0
    $$\lim _ { x \rightarrow 0 } \frac { 1 - \cos x } { x \log ( 1 + x ) } =$$
  • Question 4
    1 / -0
    $$P= \lim_{x \rightarrow o^{+}} (1+ \tan^{2} \sqrt{x})^{1/2x}=$$____
    Solution

  • Question 5
    1 / -0
    $$\displaystyle \lim _{ x\rightarrow 0 } \left(\dfrac{1^{1/x}+2^{1/x}+3^{1/x}+.....n^{1/x}}{n}\right)^{nx} ,\ n\ \epsilon \ N $$ is equal to
    Solution
    $$\underset { x\rightarrow \infty  }{ lim } { \left( \dfrac { { 1 }^{ 1/x }+{ 2 }^{ 1/x }+{ 3 }^{ 1/x }......+{ n }^{ 1/x } }{ n }  \right)  }^{ nx }$$
    if we put the limits then we have $${ 1 }^{ \infty  }$$ form. We have for $$\underset { x\rightarrow \infty  }{ lim } { \left[ f\left( x \right)  \right]  }^{ 9\left( x \right)  }$$ such that limit has the form $${ 1 }^{ \infty  }$$, then
    $$\underset { x\rightarrow \infty  }{ lim } { \left[ f\left( x \right)  \right]  }^{ 9\left( x \right)  }={ e }^{ \underset { x\rightarrow \infty  }{ lim } 9\left( x \right) \left[ f\left( x \right) -1 \right]  }\quad \longrightarrow \left( 1 \right) $$
    Using this we can evalute the limit asked,
    $$\underset { x\rightarrow \infty  }{ lim } { \left( \dfrac { { 1 }^{ 1/x }+{ 2 }^{ 1/x }+{ 3 }^{ 1/x }+......{ n }^{ 1/x } }{ n }  \right)  }^{ nx }={ e }^{ \underset { x\rightarrow \infty  }{ lim } nx\left( \dfrac { { 1 }^{ 1/x }+{ 2 }^{ 1/x }+{ 3 }^{ 1/x }......{ n }^{ 1/x }-n }{ n }  \right)  }$$
    $$={ e }^{ \underset { x\rightarrow \infty  }{ lim } \left( \dfrac { { 1 }^{ 1/x }+{ 2 }^{ 1/x }+{ 3 }^{ 1/x }+......{ n }^{ 1/x }-n }{ \left( 1/x \right)  }  \right)  }$$
    if we put the limits we find that it is in $$\div $$ form, so we will employ the L'Hospital's rule
    $$={ e }^{ \underset { x\rightarrow \infty  }{ lim } \left( \dfrac { { 1 }^{ 1/x }\left( -\dfrac { 1 }{ { x }^{ 2 } }  \right) ln1+{ 2 }^{ 1/x }\left( -\dfrac { 1 }{ { x }^{ 2 } }  \right) ln2......+{ n }^{ 1/x }\left( -\dfrac { 1 }{ { x }^{ 2 } }  \right) lnn-0 }{ \left( -1/{ x }^{ 2 } \right)  }  \right)  }$$
    $$={ e }^{ \underset { x\rightarrow \infty  }{ lim } \left( { 1 }^{ 1/x }ln1+{ 2 }^{ 1/x }ln2......+{ n }^{ 1/x }lnn \right)  }$$
    $$={ e }^{ ln1+ln2+ln3......+lnn }$$          [$$\because$$    $$\underset { x\rightarrow \infty  }{ lim } { n }^{ 1/x }={ n }^{ 0 }=1$$]
    $$={ e }^{ ln\left( 1.2.3.4.5.6......n \right)  }$$              [$$\because$$    $$lna+lnb=lnab$$]
    $$={ e }^{ lnn! }$$
    $$=n!$$                                  [$$\because$$   $${ e }^{ lnb }=b$$]
    Answer : Option A
  • Question 6
    1 / -0
    The values of $$\displaystyle\lim_{n\rightarrow \infty}\dfrac{\sqrt[4]{n^5+2}-\sqrt[3]{n^2+1}}{\sqrt[5]{n^4+2}-\sqrt[2]{n^3+1}}$$ is?
    Solution

  • Question 7
    1 / -0
    Let $$f(x)=\displaystyle\lim _{ n\rightarrow \infty  }{ \dfrac { { 2x }^{ 2n }\sin { \frac { 1 }{ x } +x }  }{ 1+{ x }^{ 2x } }  } $$ then find 
    Solution

  • Question 8
    1 / -0
    $$\displaystyle\lim _{ x\rightarrow 0 }{ \dfrac { x\tan { 2x } -2x\tan { x }  }{ \left( 1-\cos { 2x }  \right) ^{ 2 } }  }$$ equal to 
    Solution

  • Question 9
    1 / -0
    Evaluate $$\displaystyle \lim _{ x\rightarrow 0 }{ \dfrac { \sin { \left[ \cos { x }  \right]  }  }{ 1+\left[ \cos { x }  \right]  }  } $$ ($$[.]$$ denotes the greatest integer function)
    Solution

  • Question 10
    1 / -0
    $$if\left( x \right) =\left[ x-3 \right] +\left[ x-4 \right] \quad for\quad x\epsilon R\quad then\quad \underset { x\rightarrow 3 }{ lim } f\left( x \right) =$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now