$$\underset { x\rightarrow \infty }{ lim } { \left( \dfrac { { 1 }^{ 1/x }+{ 2 }^{ 1/x }+{ 3 }^{ 1/x }......+{ n }^{ 1/x } }{ n } \right) }^{ nx }$$
if we put the limits then we have $${ 1 }^{ \infty }$$ form. We have for $$\underset { x\rightarrow \infty }{ lim } { \left[ f\left( x \right) \right] }^{ 9\left( x \right) }$$ such that limit has the form $${ 1 }^{ \infty }$$, then
$$\underset { x\rightarrow \infty }{ lim } { \left[ f\left( x \right) \right] }^{ 9\left( x \right) }={ e }^{ \underset { x\rightarrow \infty }{ lim } 9\left( x \right) \left[ f\left( x \right) -1 \right] }\quad \longrightarrow \left( 1 \right) $$
Using this we can evalute the limit asked,
$$\underset { x\rightarrow \infty }{ lim } { \left( \dfrac { { 1 }^{ 1/x }+{ 2 }^{ 1/x }+{ 3 }^{ 1/x }+......{ n }^{ 1/x } }{ n } \right) }^{ nx }={ e }^{ \underset { x\rightarrow \infty }{ lim } nx\left( \dfrac { { 1 }^{ 1/x }+{ 2 }^{ 1/x }+{ 3 }^{ 1/x }......{ n }^{ 1/x }-n }{ n } \right) }$$
$$={ e }^{ \underset { x\rightarrow \infty }{ lim } \left( \dfrac { { 1 }^{ 1/x }+{ 2 }^{ 1/x }+{ 3 }^{ 1/x }+......{ n }^{ 1/x }-n }{ \left( 1/x \right) } \right) }$$
if we put the limits we find that it is in $$\div $$ form, so we will employ the L'Hospital's rule
$$={ e }^{ \underset { x\rightarrow \infty }{ lim } \left( \dfrac { { 1 }^{ 1/x }\left( -\dfrac { 1 }{ { x }^{ 2 } } \right) ln1+{ 2 }^{ 1/x }\left( -\dfrac { 1 }{ { x }^{ 2 } } \right) ln2......+{ n }^{ 1/x }\left( -\dfrac { 1 }{ { x }^{ 2 } } \right) lnn-0 }{ \left( -1/{ x }^{ 2 } \right) } \right) }$$
$$={ e }^{ \underset { x\rightarrow \infty }{ lim } \left( { 1 }^{ 1/x }ln1+{ 2 }^{ 1/x }ln2......+{ n }^{ 1/x }lnn \right) }$$
$$={ e }^{ ln1+ln2+ln3......+lnn }$$ [$$\because$$ $$\underset { x\rightarrow \infty }{ lim } { n }^{ 1/x }={ n }^{ 0 }=1$$]
$$={ e }^{ ln\left( 1.2.3.4.5.6......n \right) }$$ [$$\because$$ $$lna+lnb=lnab$$]
$$={ e }^{ lnn! }$$
$$=n!$$ [$$\because$$ $${ e }^{ lnb }=b$$]
Answer : Option A