Self Studies

Limits and Continuity Test 8

Result Self Studies

Limits and Continuity Test 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$f : R\rightarrow R$$ be any function, Define
    $$g:R\rightarrow R$$ by $$g(x)=|f(x)|\forall x$$, then
    Solution
    From the property of the modulus function, it is clear that it is continuous along the entire number line.
    Thus, the function defined by $$g(x) = |f(x)|$$ is continuous if $$f(x)$$ is a continuous function.
  • Question 2
    1 / -0
    $$\displaystyle \lim_{x\rightarrow \infty }\frac{2x+7\sin x}{4x+3\cos x}=$$
    Solution
    We divide both the numerator and denominator by x.
    Since, from the property of trigonometric functions we know that $$sin x$$ and $$cos x$$ can only have their values between $$-1$$ and $$1$$
    Thus, the expression transforms to,
    $$lim _{x \rightarrow \infty }            \dfrac{2 + 7\dfrac{sin x}{x}}{4 + 3\dfrac{cos x}{x}} $$
    Now applying the limit,
    $$= \dfrac{2 +0}{4+0} $$
    $$= \dfrac{1}{2} $$
    Hence, option 'C' is correct.
  • Question 3
    1 / -0
    The function $$y=3\sqrt{x}-|x-1|$$ is continuous at
    Solution
    Since, $$|x|$$ is a function that is continuous along the entire number line, therefore, $$|x-1|$$ is continuous for all $$x$$
    Now, we know that a negative value cannot go inside the square root sign. So $$x >= 0$$
    Thus the function $$f(x)$$ defined by $$ 3{x}^{0.5} - |x -1| $$ is continuous for all $$x >= 0$$
  • Question 4
    1 / -0

     lf $$\mathrm{f}(\mathrm{x})=\left\{\begin{matrix}1+x &x\leq 1 \\  3-ax^{2}& x>1\end{matrix}\right.$$ is continuous at $${x}=1$$ then $${a}=({a}>0)$$
    Solution
    For the function to be continuous at $$x = 1$$
    The LHL should be equal to RHL
    LHL 
    $$\lim_{  x \rightarrow {1}^{-}}   f(x) $$
    $$= \lim_{  x \rightarrow {1}^{-}}   1 + x $$
    $$= 2$$
    RHL
    $$\lim_{x \rightarrow {1}^{+}}   f(x) $$
    $$=\lim_{ x \rightarrow {1}^{+}}   3 - a{x}^{2} $$
    $$= 3-a$$
    Since, LHL = RHL
    So, $$2 = 3-a$$
    Hence, $$a = 1 $$
  • Question 5
    1 / -0
    The function $$\displaystyle \mathrm{f}({x})=\frac{1+\sin x-\cos x}{1-\sin x-\cos x}$$ is not defined at $${x}=0$$. The value of $$\mathrm{f}(\mathrm{0})$$ so that $$\mathrm{f}({x})$$ is continuous at $${x}=0$$ is
    Solution
    Since, on applying the limit, the function is of $$ \dfrac{0}{0} $$ form,
    we apply the L-Hospital's Rule and differentiate both the numerator and the denominator individually.
    Thus, the question transforms to,
    $$\displaystyle\lim_{x \rightarrow 0} \dfrac{cos x +sin x}{sin x - cos x} $$

    Now applying the limit, we get
    $$\Rightarrow \dfrac{0+1}{0-1} = -1$$
    Thus, for the function to be continuous at $$x = 0$$, $$f(0) = -1$$
  • Question 6
    1 / -0

    $$\displaystyle Lt_{x\rightarrow 0^+}(sinx)^{\tan x}=$$
    Solution
    $$\displaystyle Lt_{x\rightarrow 0^+}(sinx)^{\tan x}$$

    $$\log { k } =Lt_{ x\rightarrow 0^+ }\tan { x } \log { \sin { x }  } $$

    $$k={ e }^{ Lt_{ x\rightarrow 0^+ }\tan { x } \log { \sin { x }  }  }$$

    $$ k={ e }^{ Lt_{ x\rightarrow 0^+ }\displaystyle \frac { \log { \sin { x }  }  }{ \cot { x }  }  }$$

    It is of the form $$\displaystyle \frac{\infty}{\infty}$$, so applying L-Hospital's rule

    $$k={ e }^{ Lt_{ x\rightarrow 0^+ }\displaystyle \frac { \cot { x }  }{ -\csc ^{ 2 }{ x }  }  }$$

    $$k={ e }^{ 0 }=1$$
  • Question 7
    1 / -0
    lf the function $$\displaystyle \mathrm{f}({x})=\frac{e^{x^{2}}-\cos {x}}{x^{2}}$$ for $$x \neq 0$$ is continuous at $${x}=0$$ then $$\mathrm{f}(\mathrm{0})=$$
    Solution
    $${ f }({ x })=\dfrac { e^{ x^{ 2 } }-{ c }{ o }{ s }{ x } }{ x^{ 2 } } $$

    Given f(x) is continuous at $$x=0$$

    $$\displaystyle \lim _{ x\rightarrow 0 } f(x)=f(0)$$

    $$\displaystyle=\lim _{ x\rightarrow 0 } \dfrac { e^{ x^{ 2 } }-{ c }{ o }{ s }{ x } }{ x^{ 2 } } $$

    It is of the form $$\displaystyle \dfrac{0}{0}$$ , so applying L-Hospital's rule 

    $$\displaystyle =\lim _{ x\rightarrow 0 } \dfrac { 2xe^{ x^{ 2 } }+\sin { x }  }{ 2x } $$

    $$\displaystyle \lim_{x\to 0} e^{x^2}+\lim_{x\to 0} \dfrac{\sin x}{2x}$$

    $$\displaystyle =1+\dfrac{1}{2}=\dfrac{3}{2}$$
  • Question 8
    1 / -0

    $$\displaystyle \lim_{\mathrm{x}\rightarrow \pi }(1- 4 \tan \mathrm{x} )^{\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{x}}=$$
    Solution
    Let,    $$\text{L}= \displaystyle \lim_{\mathrm{x}\rightarrow \pi }(1- 4 \tan \mathrm{x} )^{\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{x}}$$
    Put $$y=\pi-x\Rightarrow x\to \pi\Leftrightarrow y\to 0$$
    $$\therefore \text{L}= \displaystyle \lim_{\mathrm{y}\rightarrow 0 }(1- 4 \tan \mathrm{(\pi-y)} )^{\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{(\pi-y)}}$$
    $$\quad \quad = \displaystyle \lim_{\mathrm{y}\rightarrow 0 }(1+4 \tan \mathrm{y} )^{-\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{y}}[\because \tan (\pi-y)=-\tan y]$$
    Clearly form of the limit is $$1^{\infty}$$
    $$\therefore \text{L}= \displaystyle \lim_{\mathrm{y}\rightarrow 0 }(1+4 \tan \mathrm{y} )^{\dfrac{1}{4\tan y}\times(-4)}=e^{-4}$$
  • Question 9
    1 / -0
    $$\displaystyle \lim_{n\rightarrow \infty }(\pi n)^{2/n}=$$
    Solution
    Let  $$l  = \displaystyle \lim_{n\rightarrow \infty }(\pi n)^{2/n}$$
    Take log both sides,
    $$\displaystyle \log l  = 2\lim_{n\to \infty}\frac{\log(\pi n)}{n}=2\lim_{n\to \infty}\frac{\log(n)+\log(\pi)}{n}$$
    Clearly form of the limit is $$\dfrac{\infty}{\infty}$$
    Applying L'Hospital's rule,
    $$\Rightarrow \displaystyle \log l =2\lim_{n\to \infty}\frac{1/n}{1} =0$$
    $$\Rightarrow l =e^0=1$$
  • Question 10
    1 / -0
    $$\displaystyle f\left( x \right)=\begin{cases} \begin{matrix} \displaystyle\frac { { x }^{ 5 }-32 }{ x-2 } , & x\neq 2 \end{matrix} \\ \begin{matrix} k, & x=2 \end{matrix} \end{cases}$$ is continuous at $$x=2$$, then the value of $$k$$ is 
    Solution
    Function $$\displaystyle f\left( x \right)=\begin{cases} \begin{matrix} \dfrac { { x }^{ 5 }-32 }{ x-2 } , & x\neq 2 \end{matrix} \\ \begin{matrix} k, & x=2 \end{matrix} \end{cases}$$ is continuous at $$x=2$$
    We know that $$\displaystyle \lim _{ x\rightarrow 2 }{ f\left( x \right) } =\lim _{ x\rightarrow 2 }{ \left( \frac { { x }^{ 5 }-32 }{ x-2 }  \right)  } =\lim _{ x\rightarrow 2 }{ \left( \frac { { x }^{ 5 }-{ 2 }^{ 5 } }{ x-2 }  \right)  } $$
    We also know that $$\displaystyle \lim _{ x\rightarrow a }{ \left( \frac { { x }^{ n }-{ a }^{ n } }{ x-a }  \right)  } =n{ a }^{ n-1 }$$
    Therefore, $$\displaystyle \lim _{ x\rightarrow 2 }{ f\left( x \right) } =5\times { 2 }^{ 4 }=80$$
    Since $$f(2)=k$$ and $$f(x)$$ is continuous at $$x=2,$$ therefore $$\displaystyle \lim _{ x\rightarrow 2 }{ f\left( x \right)  } =f\left( 2 \right) \Rightarrow k=80.$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now