Self Studies

Limits and Continuity Test 9

Result Self Studies

Limits and Continuity Test 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \lim_{n\rightarrow \infty }\left(\displaystyle \frac{e^{n}}{\pi}\right)^{1/n}=$$
    Solution
    Let  $$y$$  = $$\displaystyle\lim _{ n\rightarrow \infty  }{ { \left(\displaystyle \frac { e^{ n } }{ \pi  }  \right)  }^{\displaystyle \frac { 1 }{ n }  } }$$ 

    Applying logarithm on both sides

    $$\log { y } $$  =  $$\displaystyle\lim _{ n\rightarrow \infty  }{ \log { { \left(\displaystyle \frac { e^{ n } }{ \pi  }  \right)  }^{ {\displaystyle \frac { 1 }{ n }  } } }  } =\quad \lim _{ n\rightarrow \infty  }{\displaystyle \frac { 1 }{ n } \log { { \left( \displaystyle\frac { e^{ n } }{ \pi  }  \right)  } }  }$$

    $$\log { y } $$  =  $$\lim _{ n\rightarrow \infty  }{\displaystyle \frac { 1 }{ n } \left( n\log e-\log { \pi  }  \right)  } $$

    By L'Hospital Rule

    $$\log y=\log e$$

    $$ \Rightarrow \quad y = e$$

    $$\therefore \quad \displaystyle\lim _{ n\rightarrow \infty  }{ { \left(\displaystyle \frac { e^{ n } }{ \pi  }  \right)  }^{\displaystyle \frac { 1 }{ n }  } } = e$$
  • Question 2
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 1}(2-x)^{\displaystyle \tan( \frac{\pi x}{2})}=$$
    Solution
    Let $$k=\lim _{ x\rightarrow 1 } (2-x)^{ \tan  \left(\dfrac { \pi x }{ 2 } \right) }$$
    $$\log { k } =\lim _{ x\rightarrow 1 } tan\left( \dfrac { \pi x }{ 2 }  \right) \log { \left( 2-x \right)  } $$
    $$\displaystyle k={ e }^{ \lim _{ x\rightarrow 1 } tan\left( \displaystyle\dfrac { \pi x }{ 2 }  \right) \log { \left( 2-x \right)  }  }$$
    $$\displaystyle k={ e }^{ \lim _{ x\rightarrow 1 } \displaystyle \dfrac { \log { \left( 2-x \right)  }  }{ \cot { \left( \dfrac { \pi x }{ 2 }  \right)  }  }  }$$
    $$k={ e }^{ \lim _{ x\rightarrow 1 } \displaystyle \dfrac { -1 }{ -(2-x)\csc ^{ 2 }{ \left( \dfrac { \pi x }{ 2 }  \right) \left( \dfrac { \pi  }{ 2 }  \right)  }  }  }$$
    $$\Rightarrow k={e}^{\displaystyle\dfrac{2}{\pi}}$$
  • Question 3
    1 / -0
    lf the function defined by $$\mathrm{f}({x})=\displaystyle \frac{\sin 3(x-p)}{\sin 2(x-p)}$$ for $${x}\neq {p}$$ is continuous at $${x}={p}$$ then $$\mathrm{f}({p})=$$
    Solution
    Since, it is given the function is continuous at $$x = p,$$we calculate
    $$\lim _{ x \rightarrow p }      \dfrac{sin 3(x-p)}{sin 2(x-p)} $$
    $$= lim _{ x \rightarrow p  }     \dfrac{sin 3(x-p)}{3(x-p)} \times \dfrac{2(x-p)}{sin 2(x-p)} \times \dfrac{3}{2} $$
    Using the property of limits,
    $$f(p) = 1 \times 1 \times  \dfrac{3}{2} $$
  • Question 4
    1 / -0

    If the function $$\displaystyle \mathrm{f}({x})=\begin{cases}\dfrac{2^{x+2}-16}{4^{x}-16}&&  for {x}\neq 2\\ \mathrm{A} && x =2\end{cases}$$ is continuous at $$x =2$$, then $$\mathrm{A}=$$
    Solution
    Since, the function is continuous at $$x = 2$$
    $$A = \displaystyle\lim _{x \rightarrow 2 }   f(x) $$
    Since, on applying the limit this is of the $$ \dfrac{0}{0} $$ form, we apply L-Hospital's Rule
     $$\Rightarrow\displaystyle\lim_{  x \rightarrow 2}\dfrac{4.{2}^{x}log 2}{{4}^{x} log 4} $$
    Now applying the limit,
    $$A =  \dfrac{1}{2} $$
  • Question 5
    1 / -0

     $$f(x)=x\left[3-\displaystyle \log\left(\frac{\sin {x}}{x}\right)\right]-2$$ to be continuous at $${x}=0$$, then $$\mathrm{f}({0})=$$
    Solution
    USing the property of limits,  $$\underset{ x \rightarrow 0 }{Lim}     \dfrac{sin x}{x} = 1 $$
    Thus, applying the limit to the expression,
    $$\underset{ x \rightarrow 0 }{Lim}  \ \   x\left[3 - log\left(\dfrac{sin x}{x}\right)\right] -2 $$
    $$= 0(3 - log 1) - 2$$
    $$= 0 - 2$$
    $$ = -2 $$
  • Question 6
    1 / -0

     Let $$\displaystyle \mathrm{f}({x})=\begin{cases} \dfrac{(e^{kx}-1).\sin kx}{x^{2}} & for \ {x}\neq 0   \\ 4 & for \ {x} =0\end{cases}$$ is continuous at $${x}=0$$ then $${k}=$$
    Solution
    For a given function to be continuous at $$x=0$$

    $$\displaystyle \lim_{x\to 0} = f(0)\Rightarrow \lim_{x\to 0}\frac{(e^{kx}-1).\sin kx}{x^2} =4$$

    $$\Rightarrow \displaystyle k^2. \lim_{x\to 0}\frac{e^{kx}-1}{kx}.\frac{\sin kx}{kx} =4$$

    $$\Rightarrow k^2 = 4\Rightarrow k = \pm 2$$
  • Question 7
    1 / -0

     lf $$f(x)=
    \left\{\begin{matrix} (1+|\sin x|)^{\displaystyle \frac{a}{|\sin x|}}&-\displaystyle \frac{\pi}{6}<x<0\\  b&x=0 \\ e^{\displaystyle \frac{\tan 2x}{\tan 3x}} &0<x<\displaystyle \frac{\pi}{6}\end{matrix}\right.$$ is

    continuous at $$\mathrm{x}=0$$ then
    Solution
    For the function $$f(x)$$ to be continuous at $$x = 0$$
    $$\lim_{ x \rightarrow {0}^{-}}    f(x) = f(0) = \lim_{ x \rightarrow {0}^{+}}       f(x) $$
    LHL
    $$\lim_{ x \rightarrow {0}^{-}}      exp( |\sin x| \times  \dfrac{a}{|\sin x|}) = e^a$$
    $$f(0) = b$$
    RHL 
    $$\lim_{ x \rightarrow {0}^{+}  }     exp(\dfrac{\tan 2x}{\tan 3x})  $$
    $$= \lim_{ x \rightarrow {0}^{+}}      exp(\dfrac{\tan 2x}{2x\ tan3x} \times {3x} \times \dfrac{2}{3})  = e ^{\frac{2}{3}} $$
    Thus,
    $$exp(a) = b = exp( \dfrac{2}{3} )$$
    Hence, $$a = \dfrac{2}{3} $$ and $$b = exp( \dfrac{2}{3} )$$
  • Question 8
    1 / -0
    lf the function $$f(x)=\begin{cases}\dfrac{k\cos x}{\pi-2x}, & x\neq\dfrac{\pi}{2}\\ 3 & at x=\dfrac{\pi}{2}\end{cases}$$is continuous at $$\displaystyle {x}=\dfrac{\pi}{2}$$ then $${k}=$$
    Solution
    On applying the limits, since the function is of the form $$ \dfrac{0}{0} $$, We apply L-Hospital's rule,
    $$\displaystyle\lim_{ x \rightarrow \dfrac{\pi}{2}}  \dfrac{-ksin x}{-2} $$
    Since, the function has to be continuous at $$x =  \dfrac{\pi}{2} $$
    $$ \Rightarrow\dfrac{k}{2}  = 3$$
    $$\Rightarrow k = 6$$
  • Question 9
    1 / -0
    The function $$f(x)=\begin{cases} 0,&  \text{x  is irrational }\\  1,& \text{x is rational }\end{cases}$$ is
    Solution
    From the number theory, we already know that between any 2 rational numbers there exists an irrational number and vice versa.
    Thus, for the function f(x) as defined above it will take both the values 0 and 1 in the neighbourhood of every point x = a.
    Thus, function can never be continuous.
  • Question 10
    1 / -0

    The function $$\displaystyle \mathrm{f}(\mathrm{x})=\frac{\cos x-\sin x}{\cos 2x}$$ is not defined at $$x=\displaystyle \frac{\pi}{4}$$ The value of $$f\left(\displaystyle \frac{\pi}{4}\right)$$ so that $$\mathrm{f}(\mathrm{x})$$ is continuous at $$x=\displaystyle \frac{\pi}{4}$$ is
    Solution
    It is given that the function is not defined at x = $$ \dfrac{\pi}{4} $$
    So, $$f\left( \dfrac{\pi}{4} \right)$$ =$$\underset{x \rightarrow \dfrac{\pi}{4}}{Lim}\         \dfrac{cos x - sin x}{cos 2x} $$
    Since, this is of the $$ \dfrac{0}{0} $$ form, we apply L-Hospital's Rule,
     $$\underset{x \rightarrow \dfrac{\pi}{4}}{Lim} \ \       \dfrac{-sin x - cos x}{-2sin 2x} $$
    Now, applying the limit,
    $$f\left( \dfrac{\pi}{4}\right) $$ = $$ \dfrac{1}{{2}^{0.5}} $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now